Potential new treatment strategies for COVID-19: is there a role for bromhexine as add-on therapy?
Markus Depfenhart, Danielle De Villiers, Gottfried Lemperle, Markus Meyer, Salvatore Di Somma
Internal and Emergency Medicine, doi:10.1007/s11739-020-02383-3
Of huge importance now is to provide a fast, cost-effective, safe, and immediately available pharmaceutical solution to curb the rapid global spread of SARS-CoV-2. Recent publications on SARS-CoV-2 have brought attention to the possible benefit of chloroquine in the treatment of patients infected by SARS-CoV-2. Whether chloroquine can treat SARS-CoV-2 alone and also work as a prophylactic is doubtful. An effective prophylactic medication to prevent viral entry has to contain, at least, either a protease inhibitor or a competitive virus ACE2-binding inhibitor. Using bromhexine at a dosage that selectively inhibits TMPRSS2 and, in so doing, inhibits TMPRSS2-specific viral entry is likely to be effective against SARS-CoV-2. We propose the use of bromhexine as a prophylactic and treatment. We encourage the scientific community to assess bromhexine clinically as a prophylactic and curative treatment. If proven to be effective, this would allow a rapid, accessible, and cost-effective application worldwide.
Author contributions The authors wish it to be known that, in their opinion, the first two authors (MD and DdV) should be regarded as joint first authors. MD contributed to writing the article, literature research, and proposed the drug based on the criteria discussed in the article. DdV contributed to writing the article, literature research, and contributed the illustrations. GL contributed literature research, additional writing, advise, and context. MM contributed literature research, additional writing, advise, and context. SDS contributed literature research, additional writing, advise, and context.
Ethical approval No ethics approval is required. Consent to participate This article does not contain any study with humans performed by any of the authors.
Consent for publication No informed consent is required. Code availability Not applicable.
References
Agostini, Andres, Sims, Graham, Sheahan et al., Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease, mBio,
doi:10.1128/mBio.00221-18
Aguiar, Murce, Cortopassi, Pimentel, Almeida et al., Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity, Int J Parasitol Drugs Drug Resist,
doi:10.1016/j.ijpddr.2018.10.002
Belouzard, Millet, Licitra, Whittaker, Mechanisms of coronavirus cell entry mediated by the viral spike protein, Viruses,
doi:10.3390/v4061011
Bottcher-Friebertshauser, Lu, Meyer, Sielaff, Steinmetzer et al., Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections, Vaccine,
doi:10.1016/j.vaccine.2012.10.001
Báez-Santos, John, Mesecar, The SARScoronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds, Antiviral Res,
doi:10.1016/j.antiviral.2014.12.015
Cao, Wang, Wen, Liu, Wang, A trial of Lopinavir-Ritonavir in adults hospitalized with severe Covid-19, N Engl J Med,
doi:10.1056/NEJMoa2001282
Cascella, Rajnik, Cuomo, Dulebohn, Napoli, Features, evaluation and treatment coronavirus (COVID-19
Chan, Kok, Zhu, Chu, To et al., Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerg Microbes Infect,
doi:10.1080/22221751.2020.1719902
Chang, Cheng, Chang, Over-the-counter (OTC) medications to reduce cough as an adjunct to antibiotics for acute pneumonia in children and adults, Cochrane Database Syst Rev,
doi:10.1002/14651858.CD006088.pub2
Chen, Yiu, Wong, Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL (pro)) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates, F1000Res,
doi:10.1288/f1000research.22457.1
Crackower, Sarao, Oudit, Yagil, Kozieradzki et al., Angiotensin-converting enzyme 2 is an essential regulator of heart function, Nature,
doi:10.1038/nature00786
Craven, Regulatory affairs professionals society
Danelius, Andersson, Jarvoll, Lood, Gräfenstein et al., Halogen bonding: a powerful tool for modulation of peptide conformation, Biochemistry,
doi:10.1021/acs.biochem.7b00429
Ding, Zhao, Lan, Li, Lv et al., Induction of atypical autophagy by porcine hemagglutinating encephalomyelitis virus contributes to viral replication, Front Cell Infect Microbiol,
doi:10.3389/fcimb.2017.00056
Drosten, Gunther, Preiser, Van Der Werf, Brodt et al., Identification of a novel coronavirus in patients with severe acute respiratory syndrome, N Engl J Med,
doi:10.1056/NEJMoa030747
Gao, Huang, Han, Bai, Wang, The protective effects of Ambroxol in Pseudomonas aeruginosa-induced pneumonia in rats, Arch Med Sci,
doi:10.5114/aoms.2011.23403
Gattinoni, Chiumello, Caironi, Busana, Romitti et al., COVID-19 pneumonia: different respiratory treatment for different phenotypes?, Intensive Care Med,
doi:10.1007/s00134-020-06033-2
Golden, Cho, Hofman, Louie, Schonthal et al., Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors, Neurosurg Focus,
doi:10.3171/2014.12.FOCUS14748
Gorbalenya, Baker, Baric, De Groot, Drosten et al., The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2, Nat Microbiol,
doi:10.1038/s41564-020-0695-z
Gu, Gong, Zhang, Zheng, Gao et al., Multiple organ infection and the pathogenesis of SARS, J Exp Med,
doi:10.1084/jem.20050828
Gulati, Rai, Chaudhary, Ray, Nutraceuticals in respiratory disorders
Harcourt, Jukneliene, Kanjanahaluethai, Bechill, Severson et al., Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity, J Virol,
doi:10.1128/jvi.78.24.13600-13612.2004
Hashimoto, Perlot, Rehman, Trichereau, Ishiguro et al., ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation, Nature,
doi:10.1038/nature11228
Hoffmann, Kleine-Weber, Schroeder, Kruger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell,
doi:10.1016/j.cell.2020.02.052
Holshue, Debolt, Lindquist, Lofy, Wiesman et al., First case of 2019 novel coronavirus in the United States, N Engl J Med,
doi:10.1056/NEJMoa2001191
Huynh, Wang, Luan, In silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2's main protease, J Phys Chem Lett,
doi:10.1021/acs.jpclett.0c00994
Jang, Choi, Byun, Jue, Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes, Rheumatology,
doi:10.1093/rheumatology/kei282
Keyaerts, Li, Vijgen, Rysman, Verbeeck et al., Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice, Antimicrob Agents Chemother,
doi:10.1128/aac.01509-08
Keyaerts, Vijgen, Maes, Neyts, Van Ranst, In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine, Biochem Biophys Res Commun,
doi:10.1016/j.bbrc.2004.08.085
Kirchdoerfer, Cottrell, Wang, Pallesen, Yassine et al., Pre-fusion structure of a human coronavirus spike protein, Nature,
doi:10.1038/nature17200
Ksiazek, Erdman, Goldsmith, Zaki, Peret et al., A novel coronavirus associated with severe acute respiratory syndrome, N Engl J Med,
doi:10.1056/NEJMoa030781
Kuba, Imai, Rao, Gao, Guo et al., A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury, Nat Med,
doi:10.1038/nm1267
Laporte, Naesens, Airway proteases: an emerging drug target for influenza and other respiratory virus infections, Curr Opin Virol,
doi:10.1016/j.coviro.2017.03.018
Lim, Jeon, Shin, Kim, Seong et al., Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR, J Korean Med Sci,
doi:10.3346/jkms.2020.35.e79
Liu, Cao, Xu, Wang, Zhang et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discov,
doi:10.1038/s41421-020-0156-0
Lu, Zhao, Li, Niu, Yang et al., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet (London,
doi:10.1016/S0140-6736(20)30251-8
Lucas, Heinlein, Kim, Hernandez, Malik et al., The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis, Cancer Discov,
doi:10.1158/2159-8290.cd-13-1010
Mikkonen, Pihlajamaa, Sahu, Zhang, Janne, Androgen receptor and androgen-dependent gene expression in lung, Mol Cell Endocrinol,
doi:10.1016/j.mce.2009.12.022
Paton, Lee, Xu, Ooi, Cheung et al., Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial, Lancet Infect Dis,
doi:10.1016/S1473-3099(11)70065-2
Plomer, De Zeeuw, More than expectorant: new scientific data on ambroxol in the context of the treatment of bronchopulmonary diseases, MMW Fortschritte der Medizin,
doi:10.1007/s15006-017-9805-0
Ramsey, Nuttall, Hart, on behalf of the TIT (2019) A phase 1/2 trial to evaluate the pharmacokinetics, safety, and efficacy of NI-03 in patients with chronic pancreatitis: study protocol for a randomized controlled trial on the assessment of camostat treatment in chronic pancreatitis (TACTIC), Trials,
doi:10.1186/s13063-019-3606-y
Ranieri, Rubenfeld, Thompson, Ferguson, Caldwell, Acute respiratory distress syndrome: the Berlin Definition, JAMA,
doi:10.1001/jama.2012.5669
Rubio-Aliaga, Frey, Boll, Groneberg, Eichinger et al., Targeted disruption of the peptide transporter Pept2 gene in mice defines its physiological role in the kidney, Mol Cell Biol
Schrezenmeier, Dorner, Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology, Nat Rev Rheumatol,
doi:10.1038/s41584-020-0372-x
Shimizu, Yamamoto, Homma, Ishida, Effect of chloroquine on the growth of animal viruses, Archiv für die gesamte Virusforschung,
doi:10.1007/BF01250299
Simmons, Zmora, Gierer, Heurich, Pöhlmann, Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research, Antiviral Res,
doi:10.1016/j.antiviral.2013.09.028
Turk, Stoka, Vasiljeva, Renko, Sun et al., Cysteine cathepsins: from structure, function and regulation to new frontiers, Biochem Biophys Acta,
doi:10.1016/j.bbapap.2011.10.002
Vincent, Bergeron, Benjannet, Erickson, Rollin et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol J,
doi:10.1186/1743-422X-2-69
Waldrop, Alsup, Mclaughlin, Fearing coronavirus, Arizona man dies after taking a form of chloroquine used to treat aquariums, CNN Health
Wan, Shang, Graham, Baric, Li, Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS, J Virol,
doi:10.1128/jvi.00127-20
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res,
doi:10.1038/s41422-020-0282-0
Weniger, Review of side effects and toxicity of chloroquine
Wrapp, Wang, Corbett, Goldsmith, Hsieh et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science,
doi:10.1126/science.abb2507
Yamamoto, Matsuyama, Li, Takeda, Kawaguchi et al., Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cellcell fusion assay, Antimicrob Agents Chemother,
doi:10.1128/AAC.01043-16
Yan, Zou, Sun, Li, Xu et al., Antimalaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model, Cell Res,
doi:10.1038/cr.2012.165
Yao, Ye, Zhang, Cui, Huang et al., In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Clin Infect Dis,
doi:10.1093/cid/ciaa237
Yeo, Kaushal, Yeo, Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet, Gastroenterol Hepatol,
doi:10.1016/S2468-1253(20)30048-0
Zaki, Van Boheemen, Bestebroer, Osterhaus, Fouchier, Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia, N Engl J Med,
doi:10.1056/NEJMoa1211721
Zhang, Penninger, Li, Zhong, Slutsky, Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target, Intensive Care Med,
doi:10.1007/s00134-020-05985-9
Zhao, Zhao, Wang, Zhou, Ma et al., Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov, BioRxiv,
doi:10.1101/2020.01.26.919985
Zhu, Zhang, Li, Yang, Song, A Novel Coronavirus from patients with pneumonia in China, 2019, N Engl J Med,
doi:10.1056/NEJMoa2001017
DOI record:
{
"DOI": "10.1007/s11739-020-02383-3",
"ISSN": [
"1828-0447",
"1970-9366"
],
"URL": "http://dx.doi.org/10.1007/s11739-020-02383-3",
"alternative-id": [
"2383"
],
"assertion": [
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Received",
"name": "received",
"order": 1,
"value": "19 April 2020"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Accepted",
"name": "accepted",
"order": 2,
"value": "18 May 2020"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "First Online",
"name": "first_online",
"order": 3,
"value": "26 May 2020"
},
{
"group": {
"label": "Compliance with ethical standards",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 1
},
{
"group": {
"label": "Conflicts of interest",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 2,
"value": "The authors have declared that no competing interests exist."
},
{
"group": {
"label": "Ethical approval",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 3,
"value": "No ethics approval is required."
},
{
"group": {
"label": "Consent to participate",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 4,
"value": "This article does not contain any study with humans performed by any of the authors."
},
{
"group": {
"label": "Consent for publication",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 5,
"value": "No informed consent is required."
},
{
"group": {
"label": "Code availability",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 6,
"value": "Not applicable."
},
{
"label": "Free to read",
"name": "free",
"value": "This content has been made available to all."
}
],
"author": [
{
"affiliation": [],
"family": "Depfenhart",
"given": "Markus",
"sequence": "first"
},
{
"affiliation": [],
"family": "de Villiers",
"given": "Danielle",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Lemperle",
"given": "Gottfried",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Meyer",
"given": "Markus",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Di Somma",
"given": "Salvatore",
"sequence": "additional"
}
],
"container-title": "Internal and Emergency Medicine",
"container-title-short": "Intern Emerg Med",
"content-domain": {
"crossmark-restriction": false,
"domain": [
"link.springer.com"
]
},
"created": {
"date-parts": [
[
2020,
5,
26
]
],
"date-time": "2020-05-26T13:02:18Z",
"timestamp": 1590498138000
},
"deposited": {
"date-parts": [
[
2021,
5,
25
]
],
"date-time": "2021-05-25T23:42:50Z",
"timestamp": 1621986170000
},
"indexed": {
"date-parts": [
[
2024,
5,
9
]
],
"date-time": "2024-05-09T23:07:55Z",
"timestamp": 1715296075281
},
"is-referenced-by-count": 52,
"issue": "5",
"issued": {
"date-parts": [
[
2020,
5,
26
]
]
},
"journal-issue": {
"issue": "5",
"published-print": {
"date-parts": [
[
2020,
8
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://www.springer.com/tdm",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
5,
26
]
],
"date-time": "2020-05-26T00:00:00Z",
"timestamp": 1590451200000
}
},
{
"URL": "https://www.springer.com/tdm",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
5,
26
]
],
"date-time": "2020-05-26T00:00:00Z",
"timestamp": 1590451200000
}
}
],
"link": [
{
"URL": "https://link.springer.com/content/pdf/10.1007/s11739-020-02383-3.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://link.springer.com/article/10.1007/s11739-020-02383-3/fulltext.html",
"content-type": "text/html",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://link.springer.com/content/pdf/10.1007/s11739-020-02383-3.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "297",
"original-title": [],
"page": "801-812",
"prefix": "10.1007",
"published": {
"date-parts": [
[
2020,
5,
26
]
]
},
"published-online": {
"date-parts": [
[
2020,
5,
26
]
]
},
"published-print": {
"date-parts": [
[
2020,
8
]
]
},
"publisher": "Springer Science and Business Media LLC",
"reference": [
{
"key": "2383_CR1",
"unstructured": "World Health Organization (2020) Coronavirus disease (COVID-2019) press briefings. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/media-resources/press-briefings. Accessed 22 Mar 2020"
},
{
"key": "2383_CR2",
"unstructured": "World Health Organization (2020) Coronavirus Disease (COVID-2019) Situation Reports 1–89. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. Accessed 18 Apr 2020"
},
{
"DOI": "10.1056/NEJMoa030747",
"author": "C Drosten",
"doi-asserted-by": "publisher",
"first-page": "1967",
"issue": "20",
"journal-title": "N Engl J Med",
"key": "2383_CR3",
"unstructured": "Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348(20):1967–1976. https://doi.org/10.1056/NEJMoa030747(Epub 2003/04/12, PubMed PMID: 12690091)",
"volume": "348",
"year": "2003"
},
{
"DOI": "10.1056/NEJMoa030781",
"author": "TG Ksiazek",
"doi-asserted-by": "publisher",
"first-page": "1953",
"issue": "20",
"journal-title": "N Engl J Med",
"key": "2383_CR4",
"unstructured": "Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348(20):1953–1966. https://doi.org/10.1056/NEJMoa030781(Epub 2003/04/12, PubMed PMID: 12690092)",
"volume": "348",
"year": "2003"
},
{
"DOI": "10.1056/NEJMoa1211721",
"author": "AM Zaki",
"doi-asserted-by": "publisher",
"first-page": "1814",
"issue": "19",
"journal-title": "N Engl J Med",
"key": "2383_CR5",
"unstructured": "Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820. https://doi.org/10.1056/NEJMoa1211721(Epub 2012/10/19, PubMed PMID: 2307514)",
"volume": "367",
"year": "2012"
},
{
"DOI": "10.1038/s41564-020-0695-z",
"author": "AE Gorbalenya",
"doi-asserted-by": "publisher",
"journal-title": "Nat Microbiol",
"key": "2383_CR6",
"unstructured": "Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA et al (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. https://doi.org/10.1038/s41564-020-0695-z",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa2001017",
"author": "N Zhu",
"doi-asserted-by": "publisher",
"first-page": "727",
"issue": "8",
"journal-title": "N Engl J Med",
"key": "2383_CR7",
"unstructured": "Zhu N, Zhang D, Wang W, Li X, Yang B, Song J et al (2020) A Novel Coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733. https://doi.org/10.1056/NEJMoa2001017(Epub 2020/01/25, PubMed PMID: 31978945)",
"volume": "382",
"year": "2020"
},
{
"author": "M Cascella",
"key": "2383_CR8",
"unstructured": "Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R (2020) Features, evaluation and treatment coronavirus (COVID-19). StatPearls Publishing, St. Petersburg",
"volume-title": "Features, evaluation and treatment coronavirus (COVID-19)",
"year": "2020"
},
{
"DOI": "10.1038/s41586-020-2008-3",
"author": "F Wu",
"doi-asserted-by": "publisher",
"first-page": "265",
"issue": "7798",
"journal-title": "Nature",
"key": "2383_CR9",
"unstructured": "Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG et al (2020) A new coronavirus associated with human respiratory disease in China. Nature 579(7798):265–269. https://doi.org/10.1038/s41586-020-2008-3(Epub 2020/02/06, PubMed PMID: 32015508)",
"volume": "579",
"year": "2020"
},
{
"DOI": "10.1080/22221751.2020.1719902",
"author": "JF Chan",
"doi-asserted-by": "publisher",
"first-page": "221",
"issue": "1",
"journal-title": "Emerg Microbes Infect",
"key": "2383_CR10",
"unstructured": "Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S et al (2020) Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9(1):221–236. https://doi.org/10.1080/22221751.2020.1719902(Epub 2020/01/29, PubMed PMID: 31987001)",
"volume": "9",
"year": "2020"
},
{
"DOI": "10.1038/d41573-020-00016-0",
"author": "G Li",
"doi-asserted-by": "publisher",
"first-page": "149",
"issue": "3",
"journal-title": "Nat Rev Drug Discov",
"key": "2383_CR11",
"unstructured": "Li G, De Clercq E (2020) Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 19(3):149–150. https://doi.org/10.1038/d41573-020-00016-0(Epub 2020/03/05, PubMed PMID: 32127666)",
"volume": "19",
"year": "2020"
},
{
"DOI": "10.1126/science.abb2507",
"author": "D Wrapp",
"doi-asserted-by": "publisher",
"first-page": "1260",
"issue": "6483",
"journal-title": "Science (New York, NY)",
"key": "2383_CR12",
"unstructured": "Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O et al (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, NY) 367(6483):1260–1263. https://doi.org/10.1126/science.abb2507(Epub 2020/02/23, PubMed PMID: 32075877)",
"volume": "367",
"year": "2020"
},
{
"DOI": "10.1038/nature17200",
"author": "RN Kirchdoerfer",
"doi-asserted-by": "publisher",
"first-page": "118",
"issue": "7592",
"journal-title": "Nature",
"key": "2383_CR13",
"unstructured": "Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL et al (2016) Pre-fusion structure of a human coronavirus spike protein. Nature 531(7592):118–121. https://doi.org/10.1038/nature17200(Epub 2016/03/05, PubMed PMID: 26935699; PubMed Central PMCID: PMCPMC4860016)",
"volume": "531",
"year": "2016"
},
{
"DOI": "10.1016/S0140-6736(20)30251-8",
"author": "R Lu",
"doi-asserted-by": "publisher",
"first-page": "565",
"issue": "10224",
"journal-title": "Lancet (London, England)",
"key": "2383_CR14",
"unstructured": "Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet (London, England) 395(10224):565–574. https://doi.org/10.1016/S0140-6736(20)30251-8(PubMed PMID: 32007145)",
"volume": "395",
"year": "2020"
},
{
"DOI": "10.1128/jvi.00127-20",
"author": "Y Wan",
"doi-asserted-by": "publisher",
"journal-title": "J Virol.",
"key": "2383_CR15",
"unstructured": "Wan Y, Shang J, Graham R, Baric RS, Li F (2020) Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol. https://doi.org/10.1128/jvi.00127-20(Epub 2020/01/31, PubMed PMID: 31996437)",
"year": "2020"
},
{
"DOI": "10.1101/2020.01.26.919985",
"author": "Y Zhao",
"doi-asserted-by": "publisher",
"journal-title": "BioRxiv",
"key": "2383_CR16",
"unstructured": "Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W (2020) Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. BioRxiv. https://doi.org/10.1101/2020.01.26.919985",
"year": "2020"
},
{
"DOI": "10.1038/nature00786",
"author": "MA Crackower",
"doi-asserted-by": "publisher",
"first-page": "822",
"issue": "6891",
"journal-title": "Nature",
"key": "2383_CR17",
"unstructured": "Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE et al (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417(6891):822–828. https://doi.org/10.1038/nature00786",
"volume": "417",
"year": "2002"
},
{
"DOI": "10.1084/jem.20050828",
"author": "J Gu",
"doi-asserted-by": "publisher",
"first-page": "415",
"issue": "3",
"journal-title": "J Exp Med",
"key": "2383_CR18",
"unstructured": "Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y et al (2005) Multiple organ infection and the pathogenesis of SARS. J Exp Med 202(3):415–424. https://doi.org/10.1084/jem.20050828(Epub 2005/07/27)",
"volume": "202",
"year": "2005"
},
{
"DOI": "10.1038/nature11228",
"author": "T Hashimoto",
"doi-asserted-by": "publisher",
"first-page": "477",
"issue": "7408",
"journal-title": "Nature",
"key": "2383_CR19",
"unstructured": "Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M et al (2012) ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487(7408):477–481. https://doi.org/10.1038/nature11228(Epub 2012/07/28)",
"volume": "487",
"year": "2012"
},
{
"DOI": "10.1016/S2468-1253(20)30048-0",
"author": "C Yeo",
"doi-asserted-by": "publisher",
"first-page": "335",
"issue": "4",
"journal-title": "Lancet Gastroenterol Hepatol",
"key": "2383_CR20",
"unstructured": "Yeo C, Kaushal S, Yeo D (2020) Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol 5(4):335–337. https://doi.org/10.1016/S2468-1253(20)30048-0",
"volume": "5",
"year": "2020"
},
{
"DOI": "10.1001/jama.2012.5669",
"author": "VM Ranieri",
"doi-asserted-by": "publisher",
"first-page": "2526",
"issue": "23",
"journal-title": "JAMA",
"key": "2383_CR21",
"unstructured": "Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E et al (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307(23):2526–2533. https://doi.org/10.1001/jama.2012.5669(Epub 2012/07/17)",
"volume": "307",
"year": "2012"
},
{
"DOI": "10.1007/s00134-020-06033-2",
"author": "L Gattinoni",
"doi-asserted-by": "publisher",
"journal-title": "Intensive Care Med",
"key": "2383_CR22",
"unstructured": "Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L et al (2020) COVID-19 pneumonia: different respiratory treatment for different phenotypes? Intensive Care Med. https://doi.org/10.1007/s00134-020-06033-2",
"year": "2020"
},
{
"key": "2383_CR23",
"unstructured": "Craven J (2020) Covid-19 vaccine tracker. Regulatory affairs professionals society. https://www.raps.org/news-and-articles/news-articles/2020/3/covid-19-vaccine-tracker. Accessed 30 Mar 2020"
},
{
"DOI": "10.1016/j.antiviral.2013.09.028",
"author": "G Simmons",
"doi-asserted-by": "publisher",
"first-page": "605",
"issue": "3",
"journal-title": "Antiviral Res",
"key": "2383_CR24",
"unstructured": "Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S (2013) Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res 100(3):605–614. https://doi.org/10.1016/j.antiviral.2013.09.028",
"volume": "100",
"year": "2013"
},
{
"DOI": "10.3390/v4061011",
"author": "S Belouzard",
"doi-asserted-by": "publisher",
"first-page": "1011",
"issue": "6",
"journal-title": "Viruses",
"key": "2383_CR25",
"unstructured": "Belouzard S, Millet JK, Licitra BN, Whittaker GR (2012) Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4(6):1011–1033. https://doi.org/10.3390/v4061011(Epub 2012/07/21)",
"volume": "4",
"year": "2012"
},
{
"DOI": "10.1016/j.cell.2020.02.052",
"author": "M Hoffmann",
"doi-asserted-by": "publisher",
"journal-title": "Cell",
"key": "2383_CR26",
"unstructured": "Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. https://doi.org/10.1016/j.cell.2020.02.052(Epub 2020/03/07)",
"year": "2020"
},
{
"key": "2383_CR27",
"unstructured": "Drugs. Camostat. 2020. https://www.drugs.com/international/camostat.html. Accessed 22 Mar 2020"
},
{
"DOI": "10.1186/s13063-019-3606-y",
"author": "ML Ramsey",
"doi-asserted-by": "publisher",
"first-page": "501",
"issue": "1",
"journal-title": "Trials",
"key": "2383_CR28",
"unstructured": "Ramsey ML, Nuttall J, Hart PA, on behalf of the TIT (2019) A phase 1/2 trial to evaluate the pharmacokinetics, safety, and efficacy of NI-03 in patients with chronic pancreatitis: study protocol for a randomized controlled trial on the assessment of camostat treatment in chronic pancreatitis (TACTIC). Trials 20(1):501. https://doi.org/10.1186/s13063-019-3606-y",
"volume": "20",
"year": "2019"
},
{
"DOI": "10.1016/j.antiviral.2015.01.011",
"author": "Y Zhou",
"doi-asserted-by": "publisher",
"first-page": "76",
"journal-title": "Antiviral Res",
"key": "2383_CR29",
"unstructured": "Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R, Nunneley JW et al (2015) Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res 116:76–84. https://doi.org/10.1016/j.antiviral.2015.01.011",
"volume": "116",
"year": "2015"
},
{
"DOI": "10.1128/AAC.01043-16",
"author": "M Yamamoto",
"doi-asserted-by": "publisher",
"first-page": "6532",
"issue": "11",
"journal-title": "Antimicrob Agents Chemother",
"key": "2383_CR30",
"unstructured": "Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y, Inoue J-I et al (2016) Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother 60(11):6532–6539. https://doi.org/10.1128/AAC.01043-16(PubMed PMID: 27550352)",
"volume": "60",
"year": "2016"
},
{
"DOI": "10.1158/2159-8290.cd-13-1010",
"author": "JM Lucas",
"doi-asserted-by": "publisher",
"first-page": "1310",
"issue": "11",
"journal-title": "Cancer Discov",
"key": "2383_CR31",
"unstructured": "Lucas JM, Heinlein C, Kim T, Hernandez SA, Malik MS, True LD et al (2014) The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov 4(11):1310–1325. https://doi.org/10.1158/2159-8290.cd-13-1010(Epub 2014/08/15)",
"volume": "4",
"year": "2014"
},
{
"DOI": "10.1002/14651858.CD006088.pub2",
"author": "CC Chang",
"doi-asserted-by": "publisher",
"first-page": "Cd006088",
"journal-title": "Cochrane Database Syst Rev",
"key": "2383_CR32",
"unstructured": "Chang CC, Cheng AC, Chang AB (2007) Over-the-counter (OTC) medications to reduce cough as an adjunct to antibiotics for acute pneumonia in children and adults. Cochrane Database Syst Rev 4:Cd006088. https://doi.org/10.1002/14651858.CD006088.pub2(Epub 2007/10/19)",
"volume": "4",
"year": "2007"
},
{
"DOI": "10.1021/acs.biochem.7b00429",
"author": "E Danelius",
"doi-asserted-by": "publisher",
"first-page": "3265",
"issue": "25",
"journal-title": "Biochemistry",
"key": "2383_CR33",
"unstructured": "Danelius E, Andersson H, Jarvoll P, Lood K, Gräfenstein J, Erdélyi M (2017) Halogen bonding: a powerful tool for modulation of peptide conformation. Biochemistry 56(25):3265–3272. https://doi.org/10.1021/acs.biochem.7b00429(PubMed PMID: 28581720)",
"volume": "56",
"year": "2017"
},
{
"DOI": "10.1016/j.mce.2009.12.022",
"author": "L Mikkonen",
"doi-asserted-by": "publisher",
"first-page": "14",
"issue": "1–2",
"journal-title": "Mol Cell Endocrinol",
"key": "2383_CR34",
"unstructured": "Mikkonen L, Pihlajamaa P, Sahu B, Zhang FP, Janne OA (2010) Androgen receptor and androgen-dependent gene expression in lung. Mol Cell Endocrinol 317(1–2):14–24. https://doi.org/10.1016/j.mce.2009.12.022(Epub 2009/12/29)",
"volume": "317",
"year": "2010"
},
{
"key": "2383_CR35",
"unstructured": "Drugs (2020) Antiandrogens. https://www.drugs.com/drug-class/antiandrogens.html. Accessed 14 Apr 2020"
},
{
"key": "2383_CR36",
"unstructured": "Sanofi-Synthelabo Inc. (2001) Chloroquine FDA label. https://s3-us-west-2.amazonaws.com/drugbank/fda_labels/DB00608.pdf?1265922797. Accessed 22 Mar 2020"
},
{
"DOI": "10.1016/j.ijpddr.2018.10.002",
"author": "ACC Aguiar",
"doi-asserted-by": "publisher",
"first-page": "459",
"issue": "3",
"journal-title": "Int J Parasitol Drugs Drug Resist",
"key": "2383_CR37",
"unstructured": "Aguiar ACC, Murce E, Cortopassi WA, Pimentel AS, Almeida M, Barros DCS et al (2018) Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. Int J Parasitol Drugs Drug Resist 8(3):459–464. https://doi.org/10.1016/j.ijpddr.2018.10.002(Epub 2018/11/06)",
"volume": "8",
"year": "2018"
},
{
"DOI": "10.1186/1743-422X-2-69",
"author": "MJ Vincent",
"doi-asserted-by": "publisher",
"first-page": "69",
"issue": "1",
"journal-title": "Virol J",
"key": "2383_CR38",
"unstructured": "Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG et al (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2(1):69. https://doi.org/10.1186/1743-422X-2-69",
"volume": "2",
"year": "2005"
},
{
"DOI": "10.1093/rheumatology/kei282",
"author": "CH Jang",
"doi-asserted-by": "publisher",
"first-page": "703",
"issue": "6",
"journal-title": "Rheumatology (Oxford, England)",
"key": "2383_CR39",
"unstructured": "Jang CH, Choi JH, Byun MS, Jue DM (2006) Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford, England) 45(6):703–710. https://doi.org/10.1093/rheumatology/kei282(Epub 2006/01/19)",
"volume": "45",
"year": "2006"
},
{
"DOI": "10.3171/2014.12.FOCUS14748",
"author": "E Golden",
"doi-asserted-by": "publisher",
"first-page": "E12",
"journal-title": "Neurosurg Focus",
"key": "2383_CR40",
"unstructured": "Golden E, Cho H-Y, Hofman F, Louie S, Schonthal A, Chen T (2015) Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. Neurosurg Focus 38:E12. https://doi.org/10.3171/2014.12.FOCUS14748",
"volume": "38",
"year": "2015"
},
{
"DOI": "10.1038/s41422-020-0282-0",
"author": "M Wang",
"doi-asserted-by": "publisher",
"first-page": "269",
"issue": "3",
"journal-title": "Cell Res",
"key": "2383_CR41",
"unstructured": "Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M et al (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30(3):269–271. https://doi.org/10.1038/s41422-020-0282-0",
"volume": "30",
"year": "2020"
},
{
"DOI": "10.1101/2020.03.16.20037135",
"author": "P Gautret",
"doi-asserted-by": "publisher",
"journal-title": "medRxiv",
"key": "2383_CR42",
"unstructured": "Gautret P, Lagier JC, Parola P, Hoang VT, Medded L, Mailhe M et al (2020) Hydroxychloroquine and Azithromycin as a treatment of COVID-19: preliminary results of an open-label non-randomized clinical trial. medRxiv. https://doi.org/10.1101/2020.03.16.20037135",
"year": "2020"
},
{
"author": "H Weniger",
"key": "2383_CR43",
"unstructured": "Weniger H (1979) Review of side effects and toxicity of chloroquine. World Health Organization, Geneva",
"volume-title": "Review of side effects and toxicity of chloroquine",
"year": "1979"
},
{
"DOI": "10.1016/0002-9343(83)91265-2",
"author": "EW McChesney",
"doi-asserted-by": "publisher",
"first-page": "11",
"issue": "1a",
"journal-title": "Am J Med",
"key": "2383_CR44",
"unstructured": "McChesney EW (1983) Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med 75(1a):11–18. https://doi.org/10.1016/0002-9343(83)91265-2(Epub 1983/07/18)",
"volume": "75",
"year": "1983"
},
{
"DOI": "10.1007/s00134-020-05985-9",
"author": "H Zhang",
"doi-asserted-by": "publisher",
"journal-title": "Intensive Care Med",
"key": "2383_CR45",
"unstructured": "Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. https://doi.org/10.1007/s00134-020-05985-9",
"year": "2020"
},
{
"DOI": "10.1038/s41421-020-0156-0",
"author": "J Liu",
"doi-asserted-by": "publisher",
"first-page": "16",
"issue": "1",
"journal-title": "Cell Discov",
"key": "2383_CR46",
"unstructured": "Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H et al (2020) Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 6(1):16. https://doi.org/10.1038/s41421-020-0156-0",
"volume": "6",
"year": "2020"
},
{
"DOI": "10.1038/nm1267",
"author": "K Kuba",
"doi-asserted-by": "publisher",
"first-page": "875",
"issue": "8",
"journal-title": "Nat Med",
"key": "2383_CR47",
"unstructured": "Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B et al (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11(8):875–879. https://doi.org/10.1038/nm1267(Epub 2005/07/12)",
"volume": "11",
"year": "2005"
},
{
"DOI": "10.1128/MCB.23.9.3247-3252.2003",
"author": "I Rubio-Aliaga",
"doi-asserted-by": "publisher",
"first-page": "3247",
"issue": "9",
"journal-title": "Mol Cell Biol",
"key": "2383_CR48",
"unstructured": "Rubio-Aliaga I, Frey I, Boll M, Groneberg DA, Eichinger HM, Balling R et al (2003) Targeted disruption of the peptide transporter Pept2 gene in mice defines its physiological role in the kidney. Mol Cell Biol 23(9):3247–3252",
"volume": "23",
"year": "2003"
},
{
"DOI": "10.3389/fcimb.2017.00056",
"author": "N Ding",
"doi-asserted-by": "publisher",
"first-page": "56",
"journal-title": "Front Cell Infect Microbiol",
"key": "2383_CR49",
"unstructured": "Ding N, Zhao K, Lan Y, Li Z, Lv X, Su J et al (2017) Induction of atypical autophagy by porcine hemagglutinating encephalomyelitis virus contributes to viral replication. Front Cell Infect Microbiol 7:56. https://doi.org/10.3389/fcimb.2017.00056(Epub 2017/03/16)",
"volume": "7",
"year": "2017"
},
{
"DOI": "10.1016/j.bbapap.2011.10.002",
"author": "V Turk",
"doi-asserted-by": "publisher",
"first-page": "68",
"issue": "1",
"journal-title": "Biochem Biophys Acta",
"key": "2383_CR50",
"unstructured": "Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B et al (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochem Biophys Acta 1824(1):68–88. https://doi.org/10.1016/j.bbapap.2011.10.002(Epub 2011/10/26)",
"volume": "1824",
"year": "2012"
},
{
"DOI": "10.2174/092986706777935122",
"author": "R Frlan",
"doi-asserted-by": "publisher",
"first-page": "2309",
"journal-title": "Curr Med Chem",
"key": "2383_CR51",
"unstructured": "Frlan R, Gobec S (2006) Inhibitors of cathepsin B. Curr Med Chem 13:2309–2327. https://doi.org/10.2174/092986706777935122",
"volume": "13",
"year": "2006"
},
{
"DOI": "10.1038/s41584-020-0372-x",
"author": "E Schrezenmeier",
"doi-asserted-by": "publisher",
"first-page": "155",
"issue": "3",
"journal-title": "Nat Rev Rheumatol",
"key": "2383_CR52",
"unstructured": "Schrezenmeier E, Dorner T (2020) Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 16(3):155–166. https://doi.org/10.1038/s41584-020-0372-x(Epub 2020/02/09)",
"volume": "16",
"year": "2020"
},
{
"DOI": "10.1128/mBio.00221-18",
"author": "ML Agostini",
"doi-asserted-by": "publisher",
"first-page": "e00221",
"issue": "2",
"journal-title": "mBio",
"key": "2383_CR53",
"unstructured": "Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X et al (2018) Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 9(2):e00221–e318. https://doi.org/10.1128/mBio.00221-18",
"volume": "9",
"year": "2018"
},
{
"DOI": "10.1056/NEJMoa2001191",
"author": "ML Holshue",
"doi-asserted-by": "publisher",
"first-page": "929",
"issue": "10",
"journal-title": "N Engl J Med",
"key": "2383_CR54",
"unstructured": "Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H et al (2020) First case of 2019 novel coronavirus in the United States. N Engl J Med 382(10):929–936. https://doi.org/10.1056/NEJMoa2001191(PubMed PMID: 32004427)",
"volume": "382",
"year": "2020"
},
{
"DOI": "10.1007/978-1-4939-2438-7_1",
"author": "AR Fehr",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Methods Mol Biol (Clifton, NJ)",
"key": "2383_CR55",
"unstructured": "Fehr AR, Perlman S (2015) Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol (Clifton, NJ) 1282:1–23. https://doi.org/10.1007/978-1-4939-2438-7_1(Epub 2015/02/28)",
"volume": "1282",
"year": "2015"
},
{
"DOI": "10.1128/jvi.78.24.13600-13612.2004",
"author": "BH Harcourt",
"doi-asserted-by": "publisher",
"first-page": "13600",
"issue": "24",
"journal-title": "J Virol",
"key": "2383_CR56",
"unstructured": "Harcourt BH, Jukneliene D, Kanjanahaluethai A, Bechill J, Severson KM, Smith CM et al (2004) Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol 78(24):13600–13612. https://doi.org/10.1128/jvi.78.24.13600-13612.2004(Epub 2004/11/27)",
"volume": "78",
"year": "2004"
},
{
"DOI": "10.1016/j.antiviral.2014.12.015",
"author": "YM Báez-Santos",
"doi-asserted-by": "publisher",
"first-page": "21",
"journal-title": "Antiviral Res",
"key": "2383_CR57",
"unstructured": "Báez-Santos YM, St John SE, Mesecar AD (2015) The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res 115:21–38. https://doi.org/10.1016/j.antiviral.2014.12.015(Epub 12/29)",
"volume": "115",
"year": "2015"
},
{
"DOI": "10.1288/f1000research.22457.1",
"author": "YW Chen",
"doi-asserted-by": "publisher",
"first-page": "129",
"journal-title": "F1000Res",
"key": "2383_CR58",
"unstructured": "Chen YW, Yiu C-PB, Wong K-Y (2020) Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL (pro)) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Res 9:129. https://doi.org/10.1288/f1000research.22457.1",
"volume": "9",
"year": "2020"
},
{
"DOI": "10.3346/jkms.2020.35.e79",
"author": "J Lim",
"doi-asserted-by": "publisher",
"first-page": "e79",
"issue": "6",
"journal-title": "J Korean Med Sci",
"key": "2383_CR59",
"unstructured": "Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ et al (2020) Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J Korean Med Sci 35(6):e79. https://doi.org/10.3346/jkms.2020.35.e79(Epub 2020/02/15)",
"volume": "35",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa2001282",
"author": "B Cao",
"doi-asserted-by": "publisher",
"journal-title": "N Engl J Med",
"key": "2383_CR60",
"unstructured": "Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G et al (2020) A trial of Lopinavir-Ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. https://doi.org/10.1056/NEJMoa2001282",
"year": "2020"
},
{
"DOI": "10.1021/acs.jpclett.0c00994",
"author": "T Huynh",
"doi-asserted-by": "publisher",
"first-page": "4413",
"journal-title": "J Phys Chem Lett",
"key": "2383_CR61",
"unstructured": "Huynh T, Wang H, Luan B (2020) In silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2’s main protease. J Phys Chem Lett11:4413–4420. https://doi.org/10.1021/acs.jpclett.0c00994",
"volume": "11",
"year": "2020"
},
{
"author": "K Gulati",
"first-page": "75",
"key": "2383_CR62",
"unstructured": "Gulati K, Rai N, Chaudhary S, Ray A (2016) Nutraceuticals in respiratory disorders. Academic Press, Cambridge, pp 75–86",
"volume-title": "Nutraceuticals in respiratory disorders",
"year": "2016"
},
{
"DOI": "10.1513/AnnalsATS.201411-507FR",
"author": "S Han",
"doi-asserted-by": "publisher",
"first-page": "765",
"issue": "5",
"journal-title": "Ann Am Thorac Soc",
"key": "2383_CR63",
"unstructured": "Han S, Mallampalli RK (2015) The role of surfactant in lung disease and host defense against pulmonary infections. Ann Am Thorac Soc 12(5):765–774. https://doi.org/10.1513/AnnalsATS.201411-507FR",
"volume": "12",
"year": "2015"
},
{
"DOI": "10.1007/s15006-017-9805-0",
"author": "M Plomer",
"doi-asserted-by": "publisher",
"first-page": "22",
"issue": "Suppl 5",
"journal-title": "MMW Fortschritte der Medizin",
"key": "2383_CR64",
"unstructured": "Plomer M, de Zeeuw J (2017) More than expectorant: new scientific data on ambroxol in the context of the treatment of bronchopulmonary diseases. MMW Fortschritte der Medizin 159(Suppl 5):22–33. https://doi.org/10.1007/s15006-017-9805-0(Epub 2017/06/24)",
"volume": "159",
"year": "2017"
},
{
"DOI": "10.5114/aoms.2011.23403",
"author": "X Gao",
"doi-asserted-by": "publisher",
"first-page": "405",
"issue": "3",
"journal-title": "Arch Med Sci",
"key": "2383_CR65",
"unstructured": "Gao X, Huang Y, Han Y, Bai C-X, Wang G (2011) The protective effects of Ambroxol in Pseudomonas aeruginosa-induced pneumonia in rats. Arch Med Sci 7(3):405–413. https://doi.org/10.5114/aoms.2011.23403(Epub 07/11)",
"volume": "7",
"year": "2011"
},
{
"key": "2383_CR66",
"unstructured": "Boehringer Ingelheim Limited (2016) Summary of bisolvon product characteristics. https://www.hpra.ie/img/uploaded/swedocuments/LicenseSPC_PA0007-025-002_29042016142022.pdf. Accessed 20 Mar 2020"
},
{
"key": "2383_CR67",
"unstructured": "Therapeutic Goods Administration (TGA) (2012) Bisolvon chesty product information. https://gp2u.com.au/static/pdf/B/BISOLVON_CHESTY-PI.pdf. Accessed 21 Mar 2020."
},
{
"DOI": "10.1016/j.coviro.2017.03.018",
"author": "M Laporte",
"doi-asserted-by": "publisher",
"first-page": "16",
"journal-title": "Curr Opin Virol",
"key": "2383_CR68",
"unstructured": "Laporte M, Naesens L (2017) Airway proteases: an emerging drug target for influenza and other respiratory virus infections. Curr Opin Virol 24:16–24. https://doi.org/10.1016/j.coviro.2017.03.018(Epub 2017/04/18)",
"volume": "24",
"year": "2017"
},
{
"key": "2383_CR69",
"unstructured": "Waldrop T, Alsup D, McLaughlin EC (2020) Fearing coronavirus, Arizona man dies after taking a form of chloroquine used to treat aquariums. CNN Health. https://edition.cnn.com/2020/03/23/health/arizona-coronavirus-chloroquine-death/index.html. Accessed 30 Mar 2020."
},
{
"DOI": "10.1016/j.antiviral.2020.104762",
"author": "F Touret",
"doi-asserted-by": "publisher",
"first-page": "104762",
"journal-title": "Antiviral Res",
"key": "2383_CR70",
"unstructured": "Touret F, de Lamballerie X (2020) Of chloroquine and COVID-19. Antiviral Res 177:104762. https://doi.org/10.1016/j.antiviral.2020.104762",
"volume": "177",
"year": "2020"
},
{
"DOI": "10.1128/aac.01509-08",
"author": "E Keyaerts",
"doi-asserted-by": "publisher",
"first-page": "3416",
"issue": "8",
"journal-title": "Antimicrob Agents Chemother",
"key": "2383_CR71",
"unstructured": "Keyaerts E, Li S, Vijgen L, Rysman E, Verbeeck J, Van Ranst M et al (2009) Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob Agents Chemother 53(8):3416–3421. https://doi.org/10.1128/aac.01509-08",
"volume": "53",
"year": "2009"
},
{
"DOI": "10.1016/j.antiviral.2017.11.017",
"author": "YW Tan",
"doi-asserted-by": "publisher",
"first-page": "143",
"journal-title": "Antiviral Res",
"key": "2383_CR72",
"unstructured": "Tan YW, Yam WK, Sun J, Chu JJH (2018) An evaluation of chloroquine as a broad-acting antiviral against hand, foot and mouth disease. Antiviral Res 149:143–149. https://doi.org/10.1016/j.antiviral.2017.11.017(Epub 2017/11/28)",
"volume": "149",
"year": "2018"
},
{
"DOI": "10.1038/cr.2012.165",
"author": "Y Yan",
"doi-asserted-by": "publisher",
"first-page": "300",
"issue": "2",
"journal-title": "Cell Res",
"key": "2383_CR73",
"unstructured": "Yan Y, Zou Z, Sun Y, Li X, Xu K-F, Wei Y et al (2013) Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res 23(2):300–302. https://doi.org/10.1038/cr.2012.165",
"volume": "23",
"year": "2013"
},
{
"DOI": "10.1016/S1473-3099(11)70065-2",
"author": "NI Paton",
"doi-asserted-by": "publisher",
"first-page": "677",
"issue": "9",
"journal-title": "Lancet Infect Dis",
"key": "2383_CR74",
"unstructured": "Paton NI, Lee L, Xu Y, Ooi EE, Cheung YB, Archuleta S et al (2011) Chloroquine for influenza prevention: a randomised, double-blind, placebo controlled trial. Lancet Infect Dis 11(9):677–683. https://doi.org/10.1016/S1473-3099(11)70065-2",
"volume": "11",
"year": "2011"
},
{
"DOI": "10.1007/BF01250299",
"author": "Y Shimizu",
"doi-asserted-by": "publisher",
"first-page": "93",
"issue": "1",
"journal-title": "Archiv für die gesamte Virusforschung",
"key": "2383_CR75",
"unstructured": "Shimizu Y, Yamamoto S, Homma M, Ishida N (1972) Effect of chloroquine on the growth of animal viruses. Archiv für die gesamte Virusforschung 36(1):93–104. https://doi.org/10.1007/BF01250299",
"volume": "36",
"year": "1972"
},
{
"DOI": "10.1016/j.bbrc.2004.08.085",
"author": "E Keyaerts",
"doi-asserted-by": "publisher",
"first-page": "264",
"issue": "1",
"journal-title": "Biochem Biophys Res Commun",
"key": "2383_CR76",
"unstructured": "Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M (2004) In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 323(1):264–268. https://doi.org/10.1016/j.bbrc.2004.08.085(Epub 2004/09/08)",
"volume": "323",
"year": "2004"
},
{
"DOI": "10.1099/0022-1317-4-2-203",
"author": "AD Inglot",
"doi-asserted-by": "publisher",
"first-page": "203",
"issue": "2",
"journal-title": "J Gen Virol",
"key": "2383_CR77",
"unstructured": "Inglot AD (1969) Comparison of the antiviral activity in vitro of some non-steroidal anti-inflammatory drugs. J Gen Virol 4(2):203–214. https://doi.org/10.1099/0022-1317-4-2-203",
"volume": "4",
"year": "1969"
},
{
"DOI": "10.1093/cid/ciaa237",
"author": "X Yao",
"doi-asserted-by": "publisher",
"journal-title": "Clin Infect Dis",
"key": "2383_CR78",
"unstructured": "Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, Zhan S, Lu R, Li H, Tan W, Liu D (2020) In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. https://doi.org/10.1093/cid/ciaa237",
"year": "2020"
},
{
"DOI": "10.1097/00004714-198202000-00005",
"author": "MI Good",
"doi-asserted-by": "publisher",
"first-page": "40",
"issue": "1",
"journal-title": "J Clin Psychopharmacol",
"key": "2383_CR79",
"unstructured": "Good MI, Shader RI (1982) Lethality and behavioral side effects of chloroquine. J Clin Psychopharmacol 2(1):40–47. https://doi.org/10.1097/00004714-198202000-00005(Epub 1982/02/01)",
"volume": "2",
"year": "1982"
},
{
"DOI": "10.1016/j.vaccine.2012.10.001",
"author": "E Bottcher-Friebertshauser",
"doi-asserted-by": "publisher",
"first-page": "7374",
"issue": "51",
"journal-title": "Vaccine",
"key": "2383_CR80",
"unstructured": "Bottcher-Friebertshauser E, Lu Y, Meyer D, Sielaff F, Steinmetzer T, Klenk HD et al (2012) Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections. Vaccine 30(51):7374–7380. https://doi.org/10.1016/j.vaccine.2012.10.001(Epub 2012/10/18)",
"volume": "30",
"year": "2012"
}
],
"reference-count": 80,
"references-count": 80,
"relation": {},
"resource": {
"primary": {
"URL": "https://link.springer.com/10.1007/s11739-020-02383-3"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Potential new treatment strategies for COVID-19: is there a role for bromhexine as add-on therapy?",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy",
"volume": "15"
}