Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchIbuzatrelvirIbuzatrelvir (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   All Outcomes       

Fixing the Achilles Heel of Pfizer’s Paxlovid for COVID-19 Treatment

Brewitz et al., Journal of Medicinal Chemistry, doi:10.1021/acs.jmedchem.4c01342
Jul 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Perspective article discussing the development of ibuzatrelvir (PF-07817883) as a SARS-CoV-2 main protease (Mpro) inhibitor which addresses the metabolic instability of nirmatrelvir and does not require co-administration with ritonavir, thereby avoiding the drawbacks and drug interactions associated with ritonavir in paxlovid.
Review covers paxlovid and ibuzatrelvir.
Brewitz et al., 5 Jul 2024, peer-reviewed, 2 authors. Contact: lennart.brewitz@chem.ox.ac.uk, christopher.schofield@chem.ox.ac.uk.
This PaperIbuzatrelvirAll
Abstract: This article is licensed under CC-BY 4.0 pubs.acs.org/jmc Viewpoint Fixing the Achilles Heel of Pfizer’s Paxlovid for COVID-19 Treatment Lennart Brewitz* and Christopher J. Schofield* Cite This: https://doi.org/10.1021/acs.jmedchem.4c01342 See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. ACCESS Read Online Metrics & More Article Recommendations ABSTRACT: Nirmatrelvir (PF-07321332), a first-in-class inhibitor of the severe acute respiratory syndrome coronavirus-2 (SARSCoV-2) main protease (Mpro), was developed by Pfizer under intense pressure during the pandemic to treat COVID-19. A weakness of nirmatrelvir is its limited metabolic stability, which led to the development of a combination therapy (paxlovid), involving coadministration of nirmatrelvir with the cytochrome P450 inhibitor ritonavir. However, limitations in tolerability of the ritonavir component reduce the scope of paxlovid. In response to these limitations, researchers at Pfizer have now developed the secondgeneration Mpro inhibitor PF-07817883 (ibuzatrelvir). Structurally related to nirmatrelvir, including with the presence of a trifluoromethyl group, albeit located differently, ibuzatrelvir manifests enhanced oral bioavailability, so it does not require coadministration with ritonavir. The development of ibuzatrelvir is an important milestone, because it is expected to enhance the treatment of COVID-19 without the drawbacks associated with ritonavir. Given the success of paxlovid in treating COVID-19, it is likely that ibuzatrelvir will be granted approval as an improved drug for treatment of COVID-19 infections, so complementing vaccination efforts and improving pandemic preparedness. The development of nirmatrelvir and ibuzatrelvir dramatically highlights the power of appropriately resourced modern medicinal chemistry to very rapidly enable the development of breakthrough medicines. Consideration of how analogous approaches can be used to develop similarly breakthrough medicines for infectious diseases such as tuberculosis and malaria is worthwhile. N irmatrelvir (PF-07321332; 1) is a first-in-class smallmolecule inhibitor of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) main protease (Mpro/ 3C-like protease), which is used clinically in combination with ritonavir under the brand-name paxlovid to treat and/or hinder SARS-CoV-2 infections (Figure 1a).1,2 Mpro is a nucleophilic cysteine protease that catalyzes the hydrolysis of viral polyproteins pp1a/1ab to give functional nonstructural proteins;3−5 Mpro inhibition disrupts the viral life cycle and halts viral replication.6−8 Work leading to the development of paxlovid, which was carried out under intense time and social pressure during the COVID-19 pandemic, was a major breakthrough, because it validated inhibition of Mpro as a treatment for COVID-19.1,2 Paxlovid treatment complements vaccination campaigns and provides a safe means to cure infections in vulnerable groups;2,9 along with several other clinically approved Mpro inhibitors subsequently reported by others,10−14 it has contributed to reducing the death rate associated with SARS-CoV-2 infections and helped enable a return to pre-COVID-19 lifestyles. Recently, researchers from Pfizer have reported on the development of PF-07817883 (ibuzatrelvir; 2) as a nirmatrelvirderived second-generation orally active Mpro..
{ 'indexed': {'date-parts': [[2024, 7, 6]], 'date-time': '2024-07-06T00:19:36Z', 'timestamp': 1720225176750}, 'reference-count': 56, 'publisher': 'American Chemical Society (ACS)', 'license': [ { 'start': { 'date-parts': [[2024, 7, 5]], 'date-time': '2024-07-05T00:00:00Z', 'timestamp': 1720137600000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'DOI': '10.1021/acs.jmedchem.4c01342', 'type': 'journal-article', 'created': {'date-parts': [[2024, 7, 5]], 'date-time': '2024-07-05T11:10:41Z', 'timestamp': 1720177841000}, 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Fixing the Achilles Heel of Pfizer’s Paxlovid for COVID-19 Treatment', 'prefix': '10.1021', 'author': [ { 'ORCID': 'http://orcid.org/0000-0002-9465-777X', 'authenticated-orcid': True, 'given': 'Lennart', 'family': 'Brewitz', 'sequence': 'first', 'affiliation': [ { 'name': 'Chemistry Research Laboratory, Department of Chemistry and the ' 'Ineos Oxford Institute for Antimicrobial Research, University of ' 'Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom'}]}, { 'ORCID': 'http://orcid.org/0000-0002-0290-6565', 'authenticated-orcid': True, 'given': 'Christopher J.', 'family': 'Schofield', 'sequence': 'additional', 'affiliation': [ { 'name': 'Chemistry Research Laboratory, Department of Chemistry and the ' 'Ineos Oxford Institute for Antimicrobial Research, University of ' 'Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom'}]}], 'member': '316', 'published-online': {'date-parts': [[2024, 7, 5]]}, 'reference': [ {'key': 'ref1/cit1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abl4784'}, {'key': 'ref2/cit2', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2118542'}, {'key': 'ref3/cit3', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2223-y'}, {'key': 'ref4/cit4', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.sbi.2023.102667'}, {'key': 'ref5/cit5', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abb3405'}, {'key': 'ref6/cit6', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bmcl.2020.127377'}, {'key': 'ref7/cit7', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41573-023-00672-y'}, {'key': 'ref8/cit8', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/D3MD00493G'}, {'key': 'ref9/cit9', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2309003'}, { 'key': 'ref10/cit10', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jmedchem.2c00117'}, {'key': 'ref11/cit11', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-023-42102-y'}, {'key': 'ref12/cit12', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2301425'}, {'key': 'ref13/cit13', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41564-024-01618-9'}, { 'key': 'ref14/cit14', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.eclinm.2023.102359'}, { 'key': 'ref15/cit15', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jmedchem.3c02469'}, {'key': 'ref16/cit16', 'doi-asserted-by': 'publisher', 'DOI': '10.1124/dmd.121.000801'}, {'key': 'ref17/cit17', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jpha.2022.10.005'}, { 'key': 'ref18/cit18', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jmedchem.2c01627'}, { 'key': 'ref19/cit19', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jmedchem.2c00404'}, {'key': 'ref20/cit20', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acscentsci.2c00369'}, {'key': 'ref21/cit21', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/cmdc.202000223'}, { 'key': 'ref22/cit22', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jmedchem.5b01697'}, {'key': 'ref23/cit23', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nrd2424'}, {'key': 'ref24/cit24', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.coph.2016.07.015'}, { 'key': 'ref25/cit25', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jmedchem.0c01063'}, {'key': 'ref26/cit26', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-021-26239-2'}, { 'key': 'ref27/cit27', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ejmech.2012.10.053'}, {'key': 'ref28/cit28', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/jm9805384'}, {'key': 'ref29/cit29', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.01348-12'}, {'key': 'ref30/cit30', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.1085658'}, {'key': 'ref31/cit31', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/jm060077j'}, {'key': 'ref32/cit32', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/jm060325b'}, {'key': 'ref33/cit33', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2007764'}, {'key': 'ref34/cit34', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2116044'}, { 'key': 'ref35/cit35', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S1473-3099(23)00493-0'}, {'key': 'ref36/cit36', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-023-06649-6'}, { 'key': 'ref37/cit37', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0140-6736(22)00519-0'}, { 'key': 'ref38/cit38', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S2213-2600(22)00528-8'}, {'key': 'ref39/cit39', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ebiom.2023.104559'}, {'key': 'ref40/cit40', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jbc.2022.101972'}, {'key': 'ref41/cit41', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-022-05514-2'}, {'key': 'ref42/cit42', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/cid/ciac512'}, { 'key': 'ref43/cit43', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2013.08.015'}, {'key': 'ref44/cit44', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/b208248a'}, {'key': 'ref45/cit45', 'doi-asserted-by': 'publisher', 'DOI': '10.1074/jbc.R110.125294'}, { 'key': 'ref46/cit46', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jmedchem.2c00303'}, {'key': 'ref47/cit47', 'doi-asserted-by': 'publisher', 'DOI': '10.15252/embj.2020106275'}, {'key': 'ref48/cit48', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2601-5'}, {'key': 'ref49/cit49', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acsptsci.1c00240'}, {'key': 'ref50/cit50', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/cmdc.202200016'}, {'key': 'ref51/cit51', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.0805240105'}, {'key': 'ref52/cit52', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.adm9724'}, {'key': 'ref53/cit53', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-023-37254-w'}, { 'key': 'ref54/cit54', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jmedchem.1c01307'}, {'key': 'ref55/cit55', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/2024.01.26.577395'}, { 'key': 'ref56/cit56', 'doi-asserted-by': 'crossref', 'volume-title': 'Chemistry of Penicillin', 'author': 'Clarke H. T.', 'year': '1949', 'DOI': '10.1515/9781400874910'}], 'container-title': 'Journal of Medicinal Chemistry', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.4c01342', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'unspecified'}, { 'URL': 'https://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.4c01342', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 7, 5]], 'date-time': '2024-07-05T11:29:14Z', 'timestamp': 1720178954000}, 'score': 1, 'resource': {'primary': {'URL': 'https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c01342'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 7, 5]]}, 'references-count': 56, 'alternative-id': ['10.1021/acs.jmedchem.4c01342'], 'URL': 'http://dx.doi.org/10.1021/acs.jmedchem.4c01342', 'relation': {}, 'ISSN': ['0022-2623', '1520-4804'], 'subject': [], 'container-title-short': 'J. Med. Chem.', 'published': {'date-parts': [[2024, 7, 5]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit