Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchExerciseExercise (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Risk Factors for SARS-CoV-2 Infection Severity in Abu Dhabi

Baynouna AlKetbi et al., Journal of Epidemiology and Global Health, doi:10.1007/s44197-021-00006-4
Aug 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Mortality 98% Improvement Relative Risk Exercise  Baynouna AlKetbi et al.  Prophylaxis Does physical activity reduce risk for COVID-19? Retrospective study in United Arab Emirates Lower mortality with higher activity levels (p=0.049) c19early.org Baynouna AlKetbi et al., J. Epidemiolo.., Aug 2021 Favorsexercise Favorsinactivity 0 0.5 1 1.5 2+
Exercise for COVID-19
9th treatment shown to reduce risk in October 2020, now with p < 0.00000000001 from 68 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
Retrospective 234 COVID-19 cases in the United Arab Emirates, showing lower risk of mortality with increased physical activity.
risk of death, 98.5% lower, OR 0.01, p = 0.049, adjusted per study, multivariable, RR approximated with OR.
Effect extraction follows pre-specified rules prioritizing more serious outcomes. Submit updates
Baynouna AlKetbi et al., 23 Aug 2021, retrospective, United Arab Emirates, peer-reviewed, 16 authors.
This PaperExerciseAll
Risk Factors for SARS-CoV-2 Infection Severity in Abu Dhabi
Latifa Mohammad, Baynouna Alketbi, Nico Nagelkerke, Hanan Abdelbaqi, Fatima Alblooshi, Mariam Alsaedi, Shamsa Almansoori, Ruqaya Alnuaimi, Amal Alkhoori, Aysha Alaryani, Mariam Alshamsi, Fatima Kayani, Noura Alblooshi, Shamma Alkhajeh, Jehan Alfalahi, Sumaya Alameri, Saeed Aldhahei
doi:10.1007/s44197-021-00006-4
Background Prediction models are essential for informing screening, assessing prognosis, and examining options for treatment. This study aimed to assess the risk of SARS-CoV-2 infection severity in the Abu Dhabi population. Methods This is a mixed retrospective cohort study and case-control study to explore the associated factors of receiving treatment in the community, being hospitalized, or requiring complex hospital care among patients with a diagnosis of SARS-CoV-2. Of 641 patients included, 266 were hospitalized; 135 were hospitalized and either died or required complex care, i.e., required ICU admission, intubation, or oxygen and 131 did not develop severe disease requiring complex care. The third group ("controls") were 375 patients who were not hospitalized. Logistic regression analyses were used to study predictors of disease severity. Results Among hospitalized patients older age and low oxygen saturation at admission were the consistent and strongest predictors of an adverse outcome. Risk factors for the death in addition to age and low oxygen saturation were elevated white blood count and low reported physical activity. Chronic kidney disease and diabetes were also associated with more severe disease in logistic regression. The mortality rate among those with less than 30 min per week of physical activity was 4.9%, while the mortality rate was 0.35% for those with physical activity > 30 min at least once a week. The interval from the onset of symptoms to admission and mortality was found to have a significant inverse relationship, with worse survival for shorter intervals. Conclusion Oxygen saturation is an important measure that should be introduced at screening sites and used in the risk assessment of patients with SARS-CoV-2. In addition, an older age was a consistent factor in all adverse outcomes, and other factors, such as low physical activity, elevated WBC, CKD, and DM, were also identified as risk factors.
Authors contributions All authors approved the manuscript. LBK conceptualization data analysis and writing the manuscript, NN review of data analysis and manuscript. HAB, FAB, MAS, SAM, RAN, AAK, AAA, MAS, FK, NAB, SAK, JAF, participated in data collection, SAD data management, and manuscript review. Conflict of interest None. Ethics approval and consent to participate This study was approved by the Abu Dhabi COVID19 Research IRB Committee, DOH/ CVDC/2020/833. Written informed consent was obtained from all participants which was at the start of the electronic survey. Consent for publication Abu Dhabi Health COVID19 Research Ethics Committee consented to publish this study. All authors consented to publish. Availability of data and materials Available on request based on the Abu Dhabi Health COVID19 Research Ethics Committee approval. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by..
References
Conca, Alabdely, Albaiz, Serum β2-microglobulin levels in Coronavirus disease 2019 (Covid-19): another prognosticator of disease severity, PLoS One
Drager, Pio-Abreu, Lopes, Bortolotto, Is hypertension a real risk factor for poor prognosis in the COVID-19 pandemic, Curr Hypertens Rep
Dubaihealth, Guidelines for Healthcare Professionals Managing Covid-19
Falasi, Khan, The impact of COVID-19 on Abu Dhabi and its primary care response, Aust J Gen Pract
Gebhard, Regitz-Zagrosek, Neuhauser, Morgan, Klein, Impact of sex and gender on COVID-19 outcomes in Europe, Biol Sex Differ
Knight, Ho, Pius, Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO clinical characterisation protocol: development and validation of the 4C Mortality Score, BMJ
Leung, Risk factors for predicting mortality in elderly patients with COVID-19: a review of clinical data in China, Mech Ageing Dev
Proença, Lopes, Kitamura, Prado, Kuriki et al., Machine learning model for predicting severity prognosis in patients infected with COVID-19: Study protocol from COVID-AI Brasil, PLoS One
Rod, Oviedo-Trespalacios, Cortes-Ramirez, A briefreview of the risk factors for covid-19 severity, Rev Saude Publica
Singh, Khunti, Assessment of risk, severity, mortality, glycemic control and antidiabetic agents in patients with diabetes and COVID-19: a narrative review, Diabetes Res Clin Pract
Sperrin, Mcmillan, Prediction models for covid-19 outcomes, BMJ
Van Smeden, Moons, De Groot, Sample size for binary logistic prediction models: beyond events per variable criteria, Stat Methods Med Res
Wolff, Nee, Hickey, Marschollek, Risk factors for Covid-19 severity and fatality: a structured literature review, Infection
Wynants, Van Calster, Collins, Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal, BMJ
Zheng, Peng, Xu, Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis, J Infect
{ 'indexed': {'date-parts': [[2022, 3, 30]], 'date-time': '2022-03-30T07:51:58Z', 'timestamp': 1648626718909}, 'reference-count': 15, 'publisher': 'Springer Science and Business Media LLC', 'issue': '4', 'license': [ { 'start': { 'date-parts': [[2021, 8, 23]], 'date-time': '2021-08-23T00:00:00Z', 'timestamp': 1629676800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}, { 'start': { 'date-parts': [[2021, 8, 23]], 'date-time': '2021-08-23T00:00:00Z', 'timestamp': 1629676800000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'short-container-title': ['J Epidemiol Glob Health'], 'published-print': {'date-parts': [[2021, 12]]}, 'abstract': '<jats:title>Abstract</jats:title><jats:sec>\n' ' <jats:title>Background</jats:title>\n' ' <jats:p>Prediction models are essential for informing screening, assessing ' 'prognosis, and examining options for treatment. This study aimed to assess the risk of ' 'SARS-CoV-2 infection severity in the Abu Dhabi population.</jats:p>\n' ' </jats:sec><jats:sec>\n' ' <jats:title>Methods</jats:title>\n' ' <jats:p>This is a mixed retrospective cohort study and case–control study to ' 'explore the associated factors of receiving treatment in the community, being hospitalized, ' 'or requiring complex hospital care among patients with a diagnosis of SARS-CoV-2. Of 641 ' 'patients included, 266 were hospitalized; 135 were hospitalized and either died or required ' 'complex care, i.e., required ICU admission, intubation, or oxygen and 131 did not develop ' 'severe disease requiring complex care. The third group (“controls”) were 375 patients who ' 'were not hospitalized. Logistic regression analyses were used to study predictors of disease ' 'severity.</jats:p>\n' ' </jats:sec><jats:sec>\n' ' <jats:title>Results</jats:title>\n' ' <jats:p>Among hospitalized patients older age and low oxygen saturation at ' 'admission were the consistent and strongest predictors of an adverse outcome. Risk factors ' 'for the death in addition to age and low oxygen saturation were elevated white blood count ' 'and low reported physical activity. Chronic kidney disease and diabetes were also associated ' 'with more severe disease in logistic regression. The mortality rate among those with less ' 'than 30\xa0min per week of physical activity was 4.9%, while the mortality rate was 0.35% for ' 'those with physical activity\u2009&gt;\u200930\xa0min at least once a week. The interval from ' 'the onset of symptoms to admission and mortality was found to have a significant inverse ' 'relationship, with worse survival for shorter intervals.</jats:p>\n' ' </jats:sec><jats:sec>\n' ' <jats:title>Conclusion</jats:title>\n' ' <jats:p>Oxygen saturation is an important measure that should be introduced ' 'at screening sites and used in the risk assessment of patients with SARS-CoV-2. In addition, ' 'an older age was a consistent factor in all adverse outcomes, and other factors, such as low ' 'physical activity, elevated WBC, CKD, and DM, were also identified as risk factors.</jats:p>\n' ' </jats:sec>', 'DOI': '10.1007/s44197-021-00006-4', 'type': 'journal-article', 'created': { 'date-parts': [[2021, 12, 13]], 'date-time': '2021-12-13T13:03:36Z', 'timestamp': 1639400616000}, 'page': '344-353', 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': ['Risk Factors for SARS-CoV-2 Infection Severity in Abu Dhabi'], 'prefix': '10.1007', 'volume': '11', 'author': [ { 'ORCID': 'http://orcid.org/0000-0003-3976-2152', 'authenticated-orcid': False, 'given': 'Latifa Mohammad', 'family': 'Baynouna AlKetbi', 'sequence': 'first', 'affiliation': []}, {'given': 'Nico', 'family': 'Nagelkerke', 'sequence': 'additional', 'affiliation': []}, {'given': 'Hanan', 'family': 'Abdelbaqi', 'sequence': 'additional', 'affiliation': []}, {'given': 'Fatima', 'family': 'ALBlooshi', 'sequence': 'additional', 'affiliation': []}, {'given': 'Mariam', 'family': 'AlSaedi', 'sequence': 'additional', 'affiliation': []}, {'given': 'Shamsa', 'family': 'Almansoori', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ruqaya', 'family': 'AlNuaimi', 'sequence': 'additional', 'affiliation': []}, {'given': 'Amal', 'family': 'AlKhoori', 'sequence': 'additional', 'affiliation': []}, {'given': 'Aysha', 'family': 'AlAryani', 'sequence': 'additional', 'affiliation': []}, {'given': 'Mariam', 'family': 'AlShamsi', 'sequence': 'additional', 'affiliation': []}, {'given': 'Fatima', 'family': 'Kayani', 'sequence': 'additional', 'affiliation': []}, {'given': 'Noura', 'family': 'Alblooshi', 'sequence': 'additional', 'affiliation': []}, {'given': 'Shamma', 'family': 'AlKhajeh', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jehan', 'family': 'AlFalahi', 'sequence': 'additional', 'affiliation': []}, {'given': 'Sumaya', 'family': 'AlAmeri', 'sequence': 'additional', 'affiliation': []}, {'given': 'Saeed', 'family': 'AlDhahei', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2021, 8, 23]]}, 'reference': [ { 'key': '6_CR1', 'unstructured': 'Knight SR, Ho A, Pius R et al. Risk stratification of patients admitted ' 'to hospital with covid-19 using the ISARIC WHO clinical characterisation ' 'protocol: development and validation of the 4C Mortality Score. BMJ ' '2020; 370, m3339.'}, { 'key': '6_CR2', 'doi-asserted-by': 'crossref', 'unstructured': 'Wynants L, Van Calster B, Collins GS et al. Prediction models for ' 'diagnosis and prognosis of covid-19 infection: systematic review and ' 'critical appraisal. BMJ 2020; 369, m1328.', 'DOI': '10.1136/bmj.m1328'}, { 'key': '6_CR3', 'doi-asserted-by': 'publisher', 'first-page': 'e16', 'DOI': '10.1016/j.jinf.2020.04.021', 'volume': '81', 'author': 'Z Zheng', 'year': '2020', 'unstructured': 'Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 ' 'cases: a systematic literature review and meta-analysis. J Infect. ' '2020;81:e16–25.', 'journal-title': 'J Infect'}, { 'key': '6_CR4', 'doi-asserted-by': 'crossref', 'unstructured': 'Al Falasi RJ, Khan MA. The impact of COVID-19 on Abu Dhabi and its ' 'primary care response. Aust J Gen Pract 2020; 49.', 'DOI': '10.31128/AJGP-COVID-35'}, { 'key': '6_CR5', 'unstructured': 'AUTHORITY DUBAIHEALTH. Guidelines for Healthcare Professionals Managing ' 'Covid-19. 2020; Version No. 1.'}, { 'key': '6_CR6', 'doi-asserted-by': 'publisher', 'first-page': '2455', 'DOI': '10.1177/0962280218784726', 'volume': '28', 'author': 'M van Smeden', 'year': '2019', 'unstructured': 'van Smeden M, Moons KG, de Groot JA, et al. Sample size for binary ' 'logistic prediction models: beyond events per variable criteria. Stat ' 'Methods Med Res. 2019;28:2455–74.', 'journal-title': 'Stat Methods Med Res'}, { 'key': '6_CR7', 'doi-asserted-by': 'crossref', 'unstructured': 'Leung C. Risk factors for predicting mortality in elderly patients with ' 'COVID-19: a review of clinical data in China. Mech Ageing Dev 2020;188, ' '111255.', 'DOI': '10.1016/j.mad.2020.111255'}, { 'key': '6_CR8', 'doi-asserted-by': 'publisher', 'first-page': '60', 'DOI': '10.11606/s1518-8787.2020054002481', 'volume': '54', 'author': 'JE Rod', 'year': '2020', 'unstructured': 'Rod JE, Oviedo-Trespalacios O, Cortes-Ramirez J. A brief-review of the ' 'risk factors for covid-19 severity. Rev Saude Publica. 2020;54:60.', 'journal-title': 'Rev Saude Publica'}, { 'key': '6_CR9', 'doi-asserted-by': 'publisher', 'first-page': '15', 'DOI': '10.1007/s15010-020-01509-1', 'volume': '49', 'author': 'D Wolff', 'year': '2021', 'unstructured': 'Wolff D, Nee S, Hickey NS, Marschollek M. Risk factors for Covid-19 ' 'severity and fatality: a structured literature review. Infection. ' '2021;49:15–28.', 'journal-title': 'Infection'}, { 'key': '6_CR10', 'doi-asserted-by': 'publisher', 'first-page': '43', 'DOI': '10.1007/s11906-020-01057-x', 'volume': '22', 'author': 'LF Drager', 'year': '2020', 'unstructured': 'Drager LF, Pio-Abreu A, Lopes RD, Bortolotto LA. Is hypertension a real ' 'risk factor for poor prognosis in the COVID-19 pandemic. Curr Hypertens ' 'Rep. 2020;22:43.', 'journal-title': 'Curr Hypertens Rep'}, { 'key': '6_CR11', 'doi-asserted-by': 'publisher', 'first-page': '29', 'DOI': '10.1186/s13293-020-00304-9', 'volume': '11', 'author': 'C Gebhard', 'year': '2020', 'unstructured': 'Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. Impact ' 'of sex and gender on COVID-19 outcomes in Europe. Biol Sex Differ. ' '2020;11:29.', 'journal-title': 'Biol Sex Differ'}, { 'key': '6_CR12', 'doi-asserted-by': 'crossref', 'unstructured': 'Singh AK, Khunti K. Assessment of risk, severity, mortality, glycemic ' 'control and antidiabetic agents in patients with diabetes and COVID-19: ' 'a narrative review. Diabetes Res Clin Pract 2020; 165, 108266.', 'DOI': '10.1016/j.diabres.2020.108266'}, { 'key': '6_CR13', 'doi-asserted-by': 'crossref', 'unstructured': 'Conca W, Alabdely M, Albaiz F et al. Serum β2-microglobulin levels in ' 'Coronavirus disease 2019 (Covid-19): another prognosticator of disease ' 'severity. PLoS One 2021; 16, e0247758.', 'DOI': '10.1371/journal.pone.0247758'}, { 'key': '6_CR14', 'doi-asserted-by': 'crossref', 'unstructured': 'Sperrin M, McMillan B. Prediction models for covid-19 outcomes. BMJ ' '2020; 371, m3777.', 'DOI': '10.1136/bmj.m3777'}, { 'key': '6_CR15', 'doi-asserted-by': 'crossref', 'unstructured': 'Paiva Proença Lobo Lopes F, Kitamura FC, Prado GF, Kuriki PEA, Garcia ' 'MRT, COVID-AI-Brasil. Machine learning model for predicting severity ' 'prognosis in patients infected with COVID-19: Study protocol from ' 'COVID-AI Brasil. PLoS One 2021; 16, e0245384.', 'DOI': '10.1371/journal.pone.0245384'}], 'container-title': ['Journal of Epidemiology and Global Health'], 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://link.springer.com/content/pdf/10.1007/s44197-021-00006-4.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/article/10.1007/s44197-021-00006-4/fulltext.html', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/content/pdf/10.1007/s44197-021-00006-4.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2021, 12, 13]], 'date-time': '2021-12-13T13:34:20Z', 'timestamp': 1639402460000}, 'score': 1, 'resource': {'primary': {'URL': 'https://link.springer.com/10.1007/s44197-021-00006-4'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2021, 8, 23]]}, 'references-count': 15, 'journal-issue': {'issue': '4', 'published-print': {'date-parts': [[2021, 12]]}}, 'alternative-id': ['6'], 'URL': 'http://dx.doi.org/10.1007/s44197-021-00006-4', 'relation': {}, 'ISSN': ['2210-6014'], 'issn-type': [{'value': '2210-6014', 'type': 'electronic'}], 'published': {'date-parts': [[2021, 8, 23]]}, 'assertion': [ { 'value': '19 December 2020', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '6 August 2021', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '23 August 2021', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, {'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Declarations'}}, { 'value': 'None.', 'order': 2, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Conflict of interest'}}, { 'value': 'This study was approved by the Abu Dhabi COVID19 Research IRB Committee, ' 'DOH/CVDC/2020/833. Written informed consent was obtained from all participants ' 'which was at the start of the electronic survey.', 'order': 3, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Ethics approval and consent to participate'}}, { 'value': 'Abu Dhabi Health COVID19 Research Ethics Committee consented to publish this ' 'study. All authors consented to publish.', 'order': 4, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Consent for publication'}}, { 'value': 'Available on request based on the Abu Dhabi Health COVID19 Research Ethics ' 'Committee approval.', 'order': 5, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Availability of data and materials'}}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit