Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Tocilizumab for COVID-19

Tocilizumab has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Thom et al., Future applications of host direct therapies for infectious disease treatment, Frontiers in Immunology, doi:10.3389/fimmu.2024.1436557
New and emerging pathogens, such as SARS-CoV2 have highlighted the requirement for threat agnostic therapies. Some antibiotics or antivirals can demonstrate broad-spectrum activity against pathogens in the same family or genus but efficacy can quickly reduce due to their specific mechanism of action and for the ability of the disease causing agent to evolve. This has led to the generation of antimicrobial resistant strains, making infectious diseases more difficult to treat. Alternative approaches therefore need to be considered, which include exploring the utility of Host-Directed Therapies (HDTs). This is a growing area with huge potential but difficulties arise due to the complexity of disease profiles. For example, a HDT given early during infection may not be appropriate or as effective when the disease has become chronic or when a patient is in intensive care. With the growing understanding of immune function, a new generation of HDT for the treatment of disease could allow targeting specific pathways to augment or diminish the host response, dependent upon disease profile, and allow for bespoke therapeutic management plans. This review highlights promising and approved HDTs that can manipulate the immune system throughout the spectrum of disease, in particular to viral and bacterial pathogens, and demonstrates how the advantages of HDT will soon outweigh the potential side effects.
Paranga et al., Cytokine Storm in COVID-19: Exploring IL-6 Signaling and Cytokine-Microbiome Interactions as Emerging Therapeutic Approaches, International Journal of Molecular Sciences, doi:10.3390/ijms252111411
IL-6 remains a key molecule of the cytokine storms characterizing COVID-19, exerting both proinflammatory and anti-inflammatory effects. Emerging research underscores the significance of IL-6 trans-signaling over classical signaling pathways, which has shifted the focus of therapeutic strategies. Additionally, the synergistic action of TNF-α and IFN-γ has been found to induce inflammatory cell death through PANoptosis, further amplifying the severity of cytokine storms. Long COVID-19 patients, as well as those with cytokine storms triggered by other conditions, exhibit distinct laboratory profiles, indicating the need for targeted approaches to diagnosis and management. Growing evidence also highlights the gut microbiota’s crucial role in modulating the immune response during COVID-19 by affecting cytokine production, adding further complexity to the disease’s immunological landscape. Targeted intervention strategies should focus on specific cytokine cutoffs, though accurate cytokine quantification remains a clinical challenge. Current treatment strategies are increasingly focused on inhibiting IL-6 trans-signaling, which offers promise for more precise therapeutic approaches to manage hyperinflammatory responses in COVID-19. In light of recent discoveries, this review summarizes key research findings on cytokine storms, particularly their role in COVID-19 and other inflammatory conditions. It explores emerging therapeutic strategies targeting cytokines like IL-6, TNF-α, and IFN-γ, while also addressing open questions, such as the need for better biomarkers to detect and manage cytokine storms. Additionally, the review highlights ongoing challenges in developing targeted treatments that mitigate hyperinflammation without compromising immune function, emphasizing the importance of continued research in this field.
Ebrahimi et al., Systems biology approaches to identify driver genes and drug combinations for treating COVID-19, Scientific Reports, doi:10.1038/s41598-024-52484-8
AbstractCorona virus 19 (Covid-19) has caused many problems in public health, economic, and even cultural and social fields since the beginning of the epidemic. However, in order to provide therapeutic solutions, many researches have been conducted and various omics data have been published. But there is still no early diagnosis method and comprehensive treatment solution. In this manuscript, by collecting important genes related to COVID-19 and using centrality and controllability analysis in PPI networks and signaling pathways related to the disease; hub and driver genes have been identified in the formation and progression of the disease. Next, by analyzing the expression data, the obtained genes have been evaluated. The results show that in addition to the significant difference in the expression of most of these genes, their expression correlation pattern is also different in the two groups of COVID-19 and control. Finally, based on the drug-gene interaction, drugs affecting the identified genes are presented in the form of a bipartite graph, which can be used as the potential drug combinations.
Agamah et al., Network-based multi-omics-disease-drug associations reveal drug repurposing candidates for COVID-19 disease phases, ScienceOpen, doi:10.58647/DRUGARXIV.PR000010.v1
Background:The development and roll-out of vaccines, and the use of various drugs have contributed to controlling the COVID-19 pandemic. Nevertheless, challenges such as the inequitable distribution of vaccines, the influence of emerging viral lineages and immune evasive variants on vaccine efficacy, and the inadequate immune defense in subgroups of the population continue to motivate the development of new drugs to combat the disease. Aim:In this study, we sought to identify, prioritize, and characterize drug repurposing candidates appropriate for treating mild, moderate, or severe COVID-19 using a network-based integrative approach that systematically integrates drug-related data and multi-omics datasets. Methods: We leveraged drug data, and multi-omics data, and used a random walk restart algorithm to explore an integrated knowledge graph comprised of three sub-graphs: (i) a COVID-19 knowledge graph, (ii) a drug repurposing knowledge graph, and (iii) a COVID-19 disease-state specific omics graph. Results:We prioritized twenty FDA-approved agents as potential candidate drugs for mild, moderate, and severe COVID-19 disease phases. Specifically, drugs that could stimulate immune cell recruitment and activation including histamine, curcumin, and paclitaxel have potential utility in mild disease states to mitigate disease progression. Drugs like omacetaxine, crizotinib, and vorinostat that exhibit antiviral properties and have the potential to inhibit viral replication can be considered for mild to moderate COVID-19 disease states. Also, given the association between antioxidant deficiency and high inflammatory factors that trigger cytokine storms, antioxidants like glutathione can be considered for moderate disease states. Drugs that exhibit potent anti-inflammatory effects like (i) anti-inflammatory drugs (sarilumab and tocilizumab), (ii) corticosteroids (dexamethasone and hydrocortisone), and (iii) immunosuppressives (sirolimus and cyclosporine) are potential candidates for moderate to severe disease states that trigger a hyperinflammatory cascade of COVID-19. Conclusion:Our study demonstrates that the multi-omics data-driven integrative analysis within the drug data enables prioritizing drug candidates for COVID-19 disease phases, offering a comprehensive basis for therapeutic strategies that can be brought to market quickly given their established safety profiles. Importantly, the multi-omics data-driven integrative analysis within the drug data approach implemented here can be used to prioritize drug repurposing candidates appropriate for other diseases.
Beg et al., Are herbal drugs effective in COVID management? A review to demystify the current facts and claims, ScienceOpen, doi:10.14293/s2199-1006.1.sor-.ppxfif7.v2
Amid the SARS‐CoV‐2 pandemic, herbal medicines have received much attention in its evidence-based therapeutics. Scientists across the globe are integrating new research at an unprecedented fast pace for the discovery of novel molecules against this deadly viral disease. Ever since ancient times, phytochemicals have long been used traditionally for the cure of many viral diseases and lately many are being tested for their potential against the viral replications/transcriptions. The unmatched structural diversity of phytoconstituents may prove to be a gold mine for antiviral drug discovery. Many plants like Heteromorpha spp., Bupleurum spp, Scrophularia scorodonia, Artemisia annua, Pyrrosia lingua, Lycoris radiate, and Lindera agregata have also been reported to have antiviral potential against SARS-CoV. Recently many synthetic molecules like remdesivir, tocilizumab, favipirapir, dexamethasone, glucocorticoid, and hydroxychloroquine etc. have been extensively investigated for their potential against the SARS‐CoV‐2, likewise, various plant-based molecules such as scutellarein, silvestrol, tryptanthrin, saikosaponin B2, quercetin, myricetin, caffeic acid, psoralidin, isobavachalcone, and lectins-griffiths in were also found to be equally effective. Needless to mention that, the herbal medicines are a valuable and powerful source of chemical compounds which need further chemical modifications and appropriate in-vitro and in-vivo testings for establishing their safety and efficacy as potential drugs against the battle with coronavirus pandemic. In this review, we will try to highlight the potential phytochemicals candidates with their possible molecular targets against the SARS‐CoV‐2and demystify the myths behind the purported remedies such as herbal therapies, teas, essential oils, tinctures, and silver products such as colloidal silver that have no scientific evidence to prevent or cure COVID-19. Apart from that, this review will also de-fabricate the surgency of objectionable claims that are continuously reckoning towards the treatment of COVID-19 with hundred per cent surety and are propagated by several herbal firms.
Mushebenge et al., Assessing the Potential Contribution of In Silico Studies in Discovering Drug Candidates That Interact with Various SARS-CoV-2 Receptors, International Journal of Molecular Sciences, doi:10.3390/ijms242115518
The COVID-19 pandemic has spurred intense research efforts to identify effective treatments for SARS-CoV-2. In silico studies have emerged as a powerful tool in the drug discovery process, particularly in the search for drug candidates that interact with various SARS-CoV-2 receptors. These studies involve the use of computer simulations and computational algorithms to predict the potential interaction of drug candidates with target receptors. The primary receptors targeted by drug candidates include the RNA polymerase, main protease, spike protein, ACE2 receptor, and transmembrane protease serine 2 (TMPRSS2). In silico studies have identified several promising drug candidates, including Remdesivir, Favipiravir, Ribavirin, Ivermectin, Lopinavir/Ritonavir, and Camostat Mesylate, among others. The use of in silico studies offers several advantages, including the ability to screen a large number of drug candidates in a relatively short amount of time, thereby reducing the time and cost involved in traditional drug discovery methods. Additionally, in silico studies allow for the prediction of the binding affinity of the drug candidates to target receptors, providing insight into their potential efficacy. This study is aimed at assessing the useful contributions of the application of computational instruments in the discovery of receptors targeted in SARS-CoV-2. It further highlights some identified advantages and limitations of these studies, thereby revealing some complementary experimental validation to ensure the efficacy and safety of identified drug candidates.
Vlasova-St. Louis et al., COVID-19-Omics Report: From Individual Omics Approaches to Precision Medicine, Reports, doi:10.3390/reports6040045
During the COVID-19 pandemic, it became apparent that precision medicine relies heavily on biological multi-omics discoveries. High throughput omics technologies, such as host genomics, transcriptomics, proteomics, epigenomics, metabolomics/lipidomics, and microbiomics, have become an integral part of precision diagnostics. The large number of data generated by omics technologies allows for the identification of vulnerable demographic populations that are susceptible to poor disease outcomes. Additionally, these data help to pinpoint the omics-based biomarkers that are currently driving advancements in precision and preventive medicine, such as early diagnosis and disease prognosis, individualized treatments, and vaccination. This report summarizes COVID-19-omic studies, highlights the results of completed and ongoing omics investigations in individuals who have experienced severe disease outcomes, and examines the impact that repurposed/novel antiviral drugs, targeted immunotherapeutics, and vaccines have had on individual and public health.
Yuan et al., The role of cell death in SARS-CoV-2 infection, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-023-01580-8
AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.
Mushebenge et al., Assessing the Potential Contribution of in Silico Studies in Discovering Drug Candidates that Interact with Various SARS-CoV-2 Receptors, MDPI AG, doi:10.20944/preprints202308.0434.v1
COVID-19 pandemic has spurred intense research efforts to identify effective treatments for SARS-CoV-2. In silico studies have emerged as a powerful tool in the drug discovery process, particularly in the search for drug candidates that interact with various SARS-CoV-2 receptors. These studies involve the use of computer simulations and computational algorithms to predict the potential interaction of drug candidates with target receptors. The primary receptors targeted by drug candidates include the RNA polymerase, main protease, spike protein, ACE2 receptor, TMPRSS2, and AP2-associated protein kinase 1. In silico studies have identified several promising drug candidates, including Remdesivir, Favipiravir, Ribavirin, Ivermectin, Lopinavir/Ritonavir, and Camostat mesylate, among others. The use of in silico studies offers several advantages, including the ability to screen a large number of drug candidates in a relatively short amount of time, thereby reducing the time and cost involved in traditional drug discovery methods. Additionally, in silico studies allow for the prediction of the binding affinity of drug candidates to target receptors, providing insight into their potential efficacy. However, it is crucial to consider both the advantages and limitations of these studies and to complement them with experimental validation to ensure the efficacy and safety of identified drug candidates.
Gudima et al., Antiviral Therapy of COVID-19, International Journal of Molecular Sciences, doi:10.3390/ijms24108867
Since the beginning of the COVID-19 pandemic, the scientific community has focused on prophylactic vaccine development. In parallel, the experience of the pharmacotherapy of this disease has increased. Due to the declining protective capacity of vaccines against new strains, as well as increased knowledge about the structure and biology of the pathogen, control of the disease has shifted to the focus of antiviral drug development over the past year. Clinical data on safety and efficacy of antivirals acting at various stages of the virus life cycle has been published. In this review, we summarize mechanisms and clinical efficacy of antiviral therapy of COVID-19 with drugs based on plasma of convalescents, monoclonal antibodies, interferons, fusion inhibitors, nucleoside analogs, and protease inhibitors. The current status of the drugs described is also summarized in relation to the official clinical guidelines for the treatment of COVID-19. In addition, here we describe innovative drugs whose antiviral effect is provided by antisense oligonucleotides targeting the SARS-CoV-2 genome. Analysis of laboratory and clinical data suggests that current antivirals successfully combat broad spectra of emerging strains of SARS-CoV-2 providing reliable defense against COVID-19.
Wang et al., Inflammasomes: a rising star on the horizon of COVID-19 pathophysiology, Frontiers in Immunology, doi:10.3389/fimmu.2023.1185233
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a contagious respiratory virus that is the cause of the coronavirus disease 2019 (COVID-19) pandemic which has posed a serious threat to public health. COVID-19 is characterized by a wide spectrum of clinical manifestations, ranging from asymptomatic infection to mild cold-like symptoms, severe pneumonia or even death. Inflammasomes are supramolecular signaling platforms that assemble in response to danger or microbial signals. Upon activation, inflammasomes mediate innate immune defense by favoring the release of proinflammatory cytokines and triggering pyroptotic cell death. Nevertheless, abnormalities in inflammasome functioning can result in a variety of human diseases such as autoimmune disorders and cancer. A growing body of evidence has showed that SARS-CoV-2 infection can induce inflammasome assembly. Dysregulated inflammasome activation and consequent cytokine burst have been associated with COVID-19 severity, alluding to the implication of inflammasomes in COVID-19 pathophysiology. Accordingly, an improved understanding of inflammasome-mediated inflammatory cascades in COVID-19 is essential to uncover the immunological mechanisms of COVID-19 pathology and identify effective therapeutic approaches for this devastating disease. In this review, we summarize the most recent findings on the interplay between SARS-CoV-2 and inflammasomes and the contribution of activated inflammasomes to COVID-19 progression. We dissect the mechanisms involving the inflammasome machinery in COVID-19 immunopathogenesis. In addition, we provide an overview of inflammasome-targeted therapies or antagonists that have potential clinical utility in COVID-19 treatment.
Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, Therapeutic Advances in Vaccines and Immunotherapy, doi:10.1177/25151355221144845
According to the World Health Organization (WHO), in the second half of 2022, there are about 606 million confirmed cases of COVID-19 and almost 6,500,000 deaths around the world. A pandemic was declared by the WHO in March 2020 when the new coronavirus spread around the world. The short time between the first cases in Wuhan and the declaration of a pandemic initiated the search for ways to stop the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or to attempt to cure the disease COVID-19. More than ever, research groups are developing vaccines, drugs, and immunobiological compounds, and they are even trying to repurpose drugs in an increasing number of clinical trials. There are great expectations regarding the vaccine’s effectiveness for the prevention of COVID-19. However, producing sufficient doses of vaccines for the entire population and SARS-CoV-2 variants are challenges for pharmaceutical industries. On the contrary, efforts have been made to create different vaccines with different approaches so that they can be used by the entire population. Here, we summarize about 8162 clinical trials, showing a greater number of drug clinical trials in Europe and the United States and less clinical trials in low-income countries. Promising results about the use of new drugs and drug repositioning, monoclonal antibodies, convalescent plasma, and mesenchymal stem cells to control viral infection/replication or the hyper-inflammatory response to the new coronavirus bring hope to treat the disease.
Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, Journal of Clinical Medicine, doi:10.3390/jcm12082893
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including “Convalescent plasma therapy in COVID-19” or “Viral polymerase inhibitors” and “COVID-19” in the Clinicaltrials.gov and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables—such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate—in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, Journal of Personalized Medicine, doi:10.3390/jpm13040664
Acute respiratory distress syndrome (ARDS) is intricately linked with SARS-CoV-2-associated disease severity and mortality, especially in patients with co-morbidities. Lung tissue injury caused as a consequence of ARDS leads to fluid build-up in the alveolar sacs, which in turn affects oxygen supply from the capillaries. ARDS is a result of a hyperinflammatory, non-specific local immune response (cytokine storm), which is aggravated as the virus evades and meddles with protective anti-viral innate immune responses. Treatment and management of ARDS remain a major challenge, first, because the condition develops as the virus keeps replicating and, therefore, immunomodulatory drugs are required to be used with caution. Second, the hyperinflammatory responses observed during ARDS are quite heterogeneous and dependent on the stage of the disease and the clinical history of the patients. In this review, we present different anti-rheumatic drugs, natural compounds, monoclonal antibodies, and RNA therapeutics and discuss their application in the management of ARDS. We also discuss on the suitability of each of these drug classes at different stages of the disease. In the last section, we discuss the potential applications of advanced computational approaches in identifying reliable drug targets and in screening out credible lead compounds against ARDS.
Astasio-Picado et al., Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471
This work is a bibliographic review. The search for the necessary information was carried out in the months of November 2022 and January 2023. The databases used were as follows: Pubmed, Academic Google, Scielo, Scopus, and Cochrane library. Results: In total, 101 articles were selected after a review of 486 articles from databases and after applying the inclusion and exclusion criteria. The update on the molecular mechanism of human coronavirus (HCoV) infection was reviewed, describing possible therapeutic targets in the viral response phase. There are different strategies to prevent or hinder the introduction of the viral particle, as well as the replicative mechanism ((protease inhibitors and RNA-dependent RNA polymerase (RdRp)). The second phase of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) involves the activation of hyperinflammatory cascades of the host’s immune system. It is concluded that there are potential therapeutic targets and drugs under study in different proinflammatory pathways such as hydroxychloroquine, JAK inhibitors, interleukin 1 and 6 inhibitors, and interferons.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit