Conv. Plasma
Nigella Sativa

Home COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Dexamethasone for COVID-19

Dexamethasone has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Niarakis et al., Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches, Frontiers in Immunology, doi:10.3389/fimmu.2023.1282859
IntroductionThe COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. MethodsExtensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors.ResultsResults revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. DiscussionThe key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.
Gysi et al., Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19, arXiv, doi:10.48550/arXiv.2004.07229
The current pandemic has highlighted the need for methodologies that can quickly and reliably prioritize clinically approved compounds for their potential effectiveness for SARS-CoV-2 infections. In the past decade, network medicine has developed and validated multiple predictive algorithms for drug repurposing, exploiting the sub-cellular network-based relationship between a drug's targets and disease genes. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs that had been experimentally screened in VeroE6 cells, and the list of drugs under clinical trial, that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that while most algorithms offer predictive power for these ground truth data, no single method offers consistently reliable outcomes across all datasets and metrics. This prompted us to develop a multimodal approach that fuses the predictions of all algorithms, showing that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We find that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these drugs rely on network-based actions that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.
Jia et al., Transcriptome-based drug repositioning for coronavirus disease 2019 (COVID-19), Pathogens and Disease, doi:10.1093/femspd/ftaa036
ABSTRACT The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) around the world has led to a pandemic with high morbidity and mortality. However, there are no effective drugs to prevent and treat the disease. Transcriptome-based drug repositioning, identifying new indications for old drugs, is a powerful tool for drug development. Using bronchoalveolar lavage fluid transcriptome data of COVID-19 patients, we found that the endocytosis and lysosome pathways are highly involved in the disease and that the regulation of genes involved in neutrophil degranulation was disrupted, suggesting an intense battle between SARS-CoV-2 and humans. Furthermore, we implemented a coexpression drug repositioning analysis, cogena, and identified two antiviral drugs (saquinavir and ribavirin) and several other candidate drugs (such as dinoprost, dipivefrine, dexamethasone and (-)-isoprenaline). Notably, the two antiviral drugs have also previously been identified using molecular docking methods, and ribavirin is a recommended drug in the diagnosis and treatment protocol for COVID pneumonia (trial version 5–7) published by the National Health Commission of the P.R. of China. Our study demonstrates the value of the cogena-based drug repositioning method for emerging infectious diseases, improves our understanding of SARS-CoV-2-induced disease, and provides potential drugs for the prevention and treatment of COVID-19 pneumonia.
Beg et al., Are herbal drugs effective in COVID management? A review to demystify the current facts and claims, ScienceOpen, doi:10.14293/s2199-1006.1.sor-.ppxfif7.v2
Amid the SARS‐CoV‐2 pandemic, herbal medicines have received much attention in its evidence-based therapeutics. Scientists across the globe are integrating new research at an unprecedented fast pace for the discovery of novel molecules against this deadly viral disease. Ever since ancient times, phytochemicals have long been used traditionally for the cure of many viral diseases and lately many are being tested for their potential against the viral replications/transcriptions. The unmatched structural diversity of phytoconstituents may prove to be a gold mine for antiviral drug discovery. Many plants like Heteromorpha spp., Bupleurum spp, Scrophularia scorodonia, Artemisia annua, Pyrrosia lingua, Lycoris radiate, and Lindera agregata have also been reported to have antiviral potential against SARS-CoV. Recently many synthetic molecules like remdesivir, tocilizumab, favipirapir, dexamethasone, glucocorticoid, and hydroxychloroquine etc. have been extensively investigated for their potential against the SARS‐CoV‐2, likewise, various plant-based molecules such as scutellarein, silvestrol, tryptanthrin, saikosaponin B2, quercetin, myricetin, caffeic acid, psoralidin, isobavachalcone, and lectins-griffiths in were also found to be equally effective. Needless to mention that, the herbal medicines are a valuable and powerful source of chemical compounds which need further chemical modifications and appropriate in-vitro and in-vivo testings for establishing their safety and efficacy as potential drugs against the battle with coronavirus pandemic. In this review, we will try to highlight the potential phytochemicals candidates with their possible molecular targets against the SARS‐CoV‐2and demystify the myths behind the purported remedies such as herbal therapies, teas, essential oils, tinctures, and silver products such as colloidal silver that have no scientific evidence to prevent or cure COVID-19. Apart from that, this review will also de-fabricate the surgency of objectionable claims that are continuously reckoning towards the treatment of COVID-19 with hundred per cent surety and are propagated by several herbal firms.
Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, Therapeutic Advances in Vaccines and Immunotherapy, doi:10.1177/25151355221144845
According to the World Health Organization (WHO), in the second half of 2022, there are about 606 million confirmed cases of COVID-19 and almost 6,500,000 deaths around the world. A pandemic was declared by the WHO in March 2020 when the new coronavirus spread around the world. The short time between the first cases in Wuhan and the declaration of a pandemic initiated the search for ways to stop the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or to attempt to cure the disease COVID-19. More than ever, research groups are developing vaccines, drugs, and immunobiological compounds, and they are even trying to repurpose drugs in an increasing number of clinical trials. There are great expectations regarding the vaccine’s effectiveness for the prevention of COVID-19. However, producing sufficient doses of vaccines for the entire population and SARS-CoV-2 variants are challenges for pharmaceutical industries. On the contrary, efforts have been made to create different vaccines with different approaches so that they can be used by the entire population. Here, we summarize about 8162 clinical trials, showing a greater number of drug clinical trials in Europe and the United States and less clinical trials in low-income countries. Promising results about the use of new drugs and drug repositioning, monoclonal antibodies, convalescent plasma, and mesenchymal stem cells to control viral infection/replication or the hyper-inflammatory response to the new coronavirus bring hope to treat the disease.
Wang et al., Repurposing Drugs for the Treatment of COVID-19 and Its Cardiovascular Manifestations, Circulation Research, doi:10.1161/circresaha.122.321879
COVID-19 is an infectious disease caused by SARS-CoV-2 leading to the ongoing global pandemic. Infected patients developed a range of respiratory symptoms, including respiratory failure, as well as other extrapulmonary complications. Multiple comorbidities, including hypertension, diabetes, cardiovascular diseases, and chronic kidney diseases, are associated with the severity and increased mortality of COVID-19. SARS-CoV-2 infection also causes a range of cardiovascular complications, including myocarditis, myocardial injury, heart failure, arrhythmias, acute coronary syndrome, and venous thromboembolism. Although a variety of methods have been developed and many clinical trials have been launched for drug repositioning for COVID-19, treatments that consider cardiovascular manifestations and cardiovascular disease comorbidities specifically are limited. In this review, we summarize recent advances in drug repositioning for COVID-19, including experimental drug repositioning, high-throughput drug screening, omics data-based, and network medicine-based computational drug repositioning, with particular attention on those drug treatments that consider cardiovascular manifestations of COVID-19. We discuss prospective opportunities and potential methods for repurposing drugs to treat cardiovascular complications of COVID-19.
Ceja-Gálvez et al., Severe COVID-19: Drugs and Clinical Trials, Journal of Clinical Medicine, doi:10.3390/jcm12082893
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including “Convalescent plasma therapy in COVID-19” or “Viral polymerase inhibitors” and “COVID-19” in the and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables—such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate—in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
Islam et al., Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, Scientific Reports, doi:10.1038/s41598-023-30095-z
AbstractThe search for an effective drug is still urgent for COVID-19 as no drug with proven clinical efficacy is available. Finding the new purpose of an approved or investigational drug, known as drug repurposing, has become increasingly popular in recent years. We propose here a new drug repurposing approach for COVID-19, based on knowledge graph (KG) embeddings. Our approach learns “ensemble embeddings” of entities and relations in a COVID-19 centric KG, in order to get a better latent representation of the graph elements. Ensemble KG-embeddings are subsequently used in a deep neural network trained for discovering potential drugs for COVID-19. Compared to related works, we retrieve more in-trial drugs among our top-ranked predictions, thus giving greater confidence in our prediction for out-of-trial drugs. For the first time to our knowledge, molecular docking is then used to evaluate the predictions obtained from drug repurposing using KG embedding. We show that Fosinopril is a potential ligand for the SARS-CoV-2 nsp13 target. We also provide explanations of our predictions thanks to rules extracted from the KG and instanciated by KG-derived explanatory paths. Molecular evaluation and explanatory paths bring reliability to our results and constitute new complementary and reusable methods for assessing KG-based drug repurposing.
Talukdar et al., Potential Drugs for COVID -19 Treatment Management With Their Contraindications and Drug- Drug Interaction, MDPI AG, doi:10.20944/preprints202105.0690.v1
Novel Coronavirus (2019-nCOV) causes inflammatory response with worsening symptoms. Classification of potential anti-viral and anti-inflammatory drugs in managing the symptoms of the COVID-19 and reducing morbidity is important. The objective of this study is to identify a group of drugs, best suited for COVID-19 treatment based on recent developments in clinical trials, FDA drug evaluation, directions and developments and from drug therapies globally. Online literature search was done on Medline, PubMed and google scholar databases for studies on various treatments and drug therapies for COVID-19 and relevant studies were identified and the identified drugs are described in detail as per their Pharmacological, pharmaceutical properties of the drugs, mechanism of action, current COVID-19 drug therapy, contraindications and drug-drug interactions Certain drugs can inhibit action against viral infection and protect lungs from severe inflammatory response. This article summarizes several drugs like Hydroxychloroquine, Chloroquine, Remdesivir, Favipiravir, Lopinavir, Ritonavir, Dexamethasone, Ivermectin, Baricitinib, Casirivimab / imdevimab, Bamlanivimab along with auxiliary treatment like convalescent plasma transfusion. Remdesivir is first drug approved by FDA. Hydroxychloroquine, dexamethasone and remdesivir are showing results against COVID-19 but it is important to test the efficacy and safety of such drugs though some drugs have shown remarkable results.
Mostafa et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, Pharmaceuticals, doi:10.3390/ph13120443
(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients.
Tomazou et al., Multi-omics data integration and network-based analysis drives a multiplex drug repurposing approach to a shortlist of candidate drugs against COVID-19, Briefings in Bioinformatics, doi:10.1093/bib/bbab114
Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is undeniably the most severe global health emergency since the 1918 Influenza outbreak. Depending on its evolutionary trajectory, the virus is expected to establish itself as an endemic infectious respiratory disease exhibiting seasonal flare-ups. Therefore, despite the unprecedented rally to reach a vaccine that can offer widespread immunization, it is equally important to reach effective prevention and treatment regimens for coronavirus disease 2019 (COVID-19). Contributing to this effort, we have curated and analyzed multi-source and multi-omics publicly available data from patients, cell lines and databases in order to fuel a multiplex computational drug repurposing approach. We devised a network-based integration of multi-omic data to prioritize the most important genes related to COVID-19 and subsequently re-rank the identified candidate drugs. Our approach resulted in a highly informed integrated drug shortlist by combining structural diversity filtering along with experts’ curation and drug–target mapping on the depicted molecular pathways. In addition to the recently proposed drugs that are already generating promising results such as dexamethasone and remdesivir, our list includes inhibitors of Src tyrosine kinase (bosutinib, dasatinib, cytarabine and saracatinib), which appear to be involved in multiple COVID-19 pathophysiological mechanisms. In addition, we highlight specific immunomodulators and anti-inflammatory drugs like dactolisib and methotrexate and inhibitors of histone deacetylase like hydroquinone and vorinostat with potential beneficial effects in their mechanisms of action. Overall, this multiplex drug repurposing approach, developed and utilized herein specifically for SARS-CoV-2, can offer a rapid mapping and drug prioritization against any pathogen-related disease.
Mavlankar et al., Interaction of surface glycoprotein of SARS-CoV-2 variants of concern with potential drug candidates: A molecular docking study, F1000Research, doi:10.12688/f1000research.109586.1
<ns4:p><ns4:bold>Background:</ns4:bold> COVID-19 has become a global threat. Since its first outbreak from Wuhan, China in December 2019, the SARS-CoV-2 virus has gone through structural changes arising due to mutations in its surface glycoprotein. These mutations have led to the emergence of different genetic variants threatening public health due to increased transmission and virulence. As new drug development is a long process, repurposing existing antiviral drugs with potential activity against SARS-CoV-2 might be a possible solution to mitigate the current situation.</ns4:p><ns4:p> <ns4:bold>Methods:</ns4:bold> This study focused on utilizing molecular docking to determine the effect of potential drugs on several variants of concern (VOCs). The effect of various drugs such as baricitinib, favipiravir, lopinavir, remdesivir and dexamethasone, which might have the potential to treat SARS-CoV-2 infections as evident from previous studies, was investigated for different VOCs.</ns4:p><ns4:p> <ns4:bold>Results:</ns4:bold> Remdesivir showed promising results for B.1.351 variant (binding energy: -7.3 kcal/mol) with residues Gln319 and Val503 facilitating strong binding. Favipiravir showed favorable results against B.1.1.7 (binding energy: -5.6 kcal/mol), B.1.351 (binding energy: -5.1 kcal/mol) and B.1.617.2 (binding energy: -5 kcal/mol). Molecular dynamics simulation for favipiravir/B.1.1.7 was conducted and showed significant results in agreement with our findings.</ns4:p><ns4:p> <ns4:bold>Conclusions:</ns4:bold> From structural modeling and molecular docking experiments, it is evident that mutations outside the receptor binding domain of surface glycoprotein do not have a sharp impact on drug binding affinity. Thus, the potential use of these drugs should be explored further for their antiviral effect against SARS-CoV-2 VOCs.</ns4:p>
Loucera et al., Real-world evidence with a retrospective cohort of 15,968 Andalusian COVID-19 hospitalized patients suggests 21 new effective treatments and one drug that increases death risk., medRxiv, doi:10.1101/2022.08.14.22278751
Despite the extensive vaccination campaigns in many countries, COVID-19 is still a major worldwide health problem because of its associated morbidity and mortality. Therefore, finding efficient treatments as fast as possible is a pressing need. Drug repurposing constitutes a convenient alternative when the need for new drugs in an unexpected medical scenario is urgent, as is the case with COVID-19. Using data from a central registry of electronic health records (the Andalusian Population Health Database, BPS), the effect of prior consumption of drugs for other indications previous to the hospitalization with respect to patient survival was studied on a retrospective cohort of 15,968 individuals, comprising all COVID-19 patients hospitalized in Andalusia between January and November 2020. Covariate-adjusted hazard ratios and analysis of lymphocyte progression curves support a significant association between consumption of 21 different drugs and better patient survival. Contrarily, one drug, furosemide, displayed a significant increase in patient mortality.
Sperry et al., Target-agnostic drug prediction integrated with medical record analysis uncovers differential associations of statins with increased survival in COVID-19 patients, PLOS Computational Biology, doi:10.1371/journal.pcbi.1011050 (Table 2)
Drug repurposing requires distinguishing established drug class targets from novel molecule-specific mechanisms and rapidly derisking their therapeutic potential in a time-critical manner, particularly in a pandemic scenario. In response to the challenge to rapidly identify treatment options for COVID-19, several studies reported that statins, as a drug class, reduce mortality in these patients. However, it is unknown if different statins exhibit consistent function or may have varying therapeutic benefit. A Bayesian network tool was used to predict drugs that shift the host transcriptomic response to SARS-CoV-2 infection towards a healthy state. Drugs were predicted using 14 RNA-sequencing datasets from 72 autopsy tissues and 465 COVID-19 patient samples or from cultured human cells and organoids infected with SARS-CoV-2. Top drug predictions included statins, which were then assessed using electronic medical records containing over 4,000 COVID-19 patients on statins to determine mortality risk in patients prescribed specific statins versus untreated matched controls. The same drugs were tested in Vero E6 cells infected with SARS-CoV-2 and human endothelial cells infected with a related OC43 coronavirus. Simvastatin was among the most highly predicted compounds (14/14 datasets) and five other statins, including atorvastatin, were predicted to be active in &gt; 50% of analyses. Analysis of the clinical database revealed that reduced mortality risk was only observed in COVID-19 patients prescribed a subset of statins, including simvastatin and atorvastatin. In vitro testing of SARS-CoV-2 infected cells revealed simvastatin to be a potent direct inhibitor whereas most other statins were less effective. Simvastatin also inhibited OC43 infection and reduced cytokine production in endothelial cells. Statins may differ in their ability to sustain the lives of COVID-19 patients despite having a shared drug target and lipid-modifying mechanism of action. These findings highlight the value of target-agnostic drug prediction coupled with patient databases to identify and clinically evaluate non-obvious mechanisms and derisk and accelerate drug repurposing opportunities.
Nandi et al., Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking, Letters in Drug Design & Discovery, doi:10.2174/1570180818666211007111105
Background: COVID-19, first reported in China, from the new strain of severe acute respiratory syndrome coronaviruses (SARS-CoV-2), poses a great threat to the world by claiming uncountable lives. SARS-CoV-2 is a highly infectious virus that has been spreading rapidly throughout the world. In the absence of any specific medicine to cure COVID-19, there is an urgent need to develop novel therapeutics, including drug repositioning along with diagnostics and vaccines to combat the COVID-19. Many antivirals, antimalarials, antiparasitic, antibacterials, immunosuppressive anti-inflammatory, and immunoregulatory agents are being clinically investigated for the treatment of COVID-19. Objectives: The earlier developed one parameter regression model correlating the dock scores with in vitro anti-SARS-CoV-2 main protease activity well predicted the six drugs viz remdesivir, chloroquine, favipiravir, ribavirin, penciclovir, and nitazoxanide as potential anti-COVID agents. To further validate our earlier model, the biological activity of nine more recently published SARS-CoV-2 main protease inhibitors has been predicted using our previously reported model. Methods: In the present study, this regression model has been used to screen the existing antiviral, antiparasitic, antitubercular, and anti pneumonia chemotherapeutics utilizing dock score analyses to explore the potential including mechanism of action of these compounds in combating SARS-CoV-2 main protease. Results: The high correlation (R=0.91) explaining 82.3% variance between the experimental versus predicted activities for the nine compounds is observed. It proves the robustness of our developed model. Therefore, this robust model has been further improved, taking a total number of 15 compounds to formulate another model with an R-value of 0.887 and the explained variance of 78.6%. These models have been used for high throughput screening (HTS) of the 21 diverse compounds belonging to antiviral, antiparasitic, antitubercular, and anti pneumonia chemotherapeutics as potential repurpose agents to combat SARS-CoV-2 main protease. The models screened that the drugs bedaquiline and lefamulin have higher binding affinities (dock scores of -8.989 and -9.153 Kcal/mol respectively) than the reference compound N-[2-(5-fluoranyl-1~H-indol-3-yl)ethyl]ethanamide (dock score of -7.998 Kcal/Mol), as well as higher predicted activities with pEC50 of 0.783 and 0.937 μM and the 0.611 and 0.724 μM respectively. The clinically used repurposed drugs dexamethasone and cefixime have been predicted with pEC50 values of -0.463 and -0.622 μM and -0.311 and -0.428 μM respectively for optimal inhibition. The drugs such as doxycycline, cefpodoxime, ciprofloxacin, sparfloxacin, moxifloxacin, and TBAJ-876 showed moderate binding affinity corresponding to the moderate predicted activity (-1.540 to -1.109 μM). Conclusion: In the present study, validation of our previously developed dock score-based one..
Issac et al., Improved And Optimized Drug Repurposing For The SARS-CoV-2 Pandemic, bioRxiv, doi:10.1101/2022.03.24.485618
The active global SARS-CoV-2 pandemic caused more than 426 million cases and 5.8 million deaths worldwide. The development of completely new drugs for such a novel disease is a challenging, time intensive process. Despite researchers around the world working on this task, no effective treatments have been developed yet. This emphasizes the importance of drug repurposing, where treatments are found among existing drugs that are meant for different diseases. A common approach to this is based on \emph{knowledge graphs}, that condense relationships between entities like drugs, diseases and genes. Graph neural networks (GNNs) can then be used for the task at hand by predicting links in such knowledge graphs. Expanding on state-of-the-art GNN research, Doshi {\sl et al.} recently developed the \drcov \ model. We further extend their work using additional output interpretation strategies. The best aggregation strategy derives a top-100 ranking of 8,070 candidate drugs, 32 of which are currently being tested in COVID-19-related clinical trials. Moreover, we present an alternative application for the model, the generation of additional candidates based on a given pre-selection of drug candidates using collaborative filtering. In addition, we improved the implementation of the \drcov \ model by significantly shortening the inference and pre-processing time by exploiting data-parallelism. As drug repurposing is a task that requires high computation and memory resources, we further accelerate the post-processing phase using a new emerging hardware --- we propose a new approach to leverage the use of high-capacity Non-Volatile Memory for aggregate drug ranking.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.