Resveratrol for COVID-19
Resveratrol has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Resveratrol and Copper for treatment of severe COVID-19: an observational study (RESCU 002), medRxiv, doi:10.1101/2020.07.21.20151423
,
AbstractBackgroundTo be universally applicable in treatment of severe COVID-19, novel therapies, especially those with little toxicity and low cost, are urgently needed. We report here the use of one such therapeutic combination involving two commonly used nutraceuticals, namely resveratrol and copper in patients with this disease. This study was prompted by pre-clinical reports that sepsis-related cytokine storm and fatality in mice can be prevented by oral administration of small quantities of resveratrol and copper. Since cytokine storm and sepsis are major causes of death in severe COVID-19, we retrospectively analyzed outcomes of patients with this condition who had received resveratrol and copper.Methods & FindingsOur analysis comprised of 230 patients with severe COVID-19 requiring inhaled oxygen who were admitted in a single tertiary care hospital in Mumbai between April 1 and May 13 2020. Thirty of these patients received, in addition to standard care, resveratrol and copper at doses of 5.6 mg and 560 ng, respectively, orally, once every 6 hours, until discharge or death. These doses were based on our pre-clinical studies, and were nearly 50 times and 2000 times less, respectively, than those recommended as health supplements. A multivariable-adjusted analysis was used to model the outcome of death in these patients and evaluate factors associated with this event. A binary logistic regression analysis was used, with age, sex, presence of comorbidities and receipt of resveratrol-copper as covariates. Data were updated as of May 30 2020. The number of deaths in resveratrol-copper and standard care only groups were 7/30 (23.3%, 95% CI 8.1%-38.4%) and 89/200 (44.5%, 95% CI 37.6%-51.3%), respectively. In multivariable analysis, age >50 years [odds ratio (OR) 2.558, 95% CI 1.454-4.302, P=0.0011] and female sex (OR 1.939, 95% CI 1.079-3.482, P=0.0267) were significantly associated, while presence of co-morbidities was not significantly associated (OR 0.713, 95% CI 0.405-1.256, P=0.2421) with death. There was a trend towards reduction in death in patients receiving resveratrol-copper (OR 0.413, 95% CI 0.164-1.039, P= 0.0604).ConclusionsWe provide preliminary results of a novel approach to the treatment of severe COVID-19 using a combination of small amounts of commonly used nutraceuticals, which is non-toxic and inexpensive, and therefore could be widely accessible globally. The nearly two-fold reduction in mortality with resveratrol-copper observed in our study needs to be confirmed in a randomized controlled trial.
Randomized double-blind placebo-controlled proof-of-concept trial of resveratrol for outpatient treatment of mild coronavirus disease (COVID-19), Scientific Reports, doi:10.1038/s41598-022-13920-9
,
AbstractResveratrol is a polyphenol that has been well studied and has demonstrated anti-viral and anti-inflammatory properties that might mitigate the effects of COVID-19. Outpatients (N = 105) were recruited from central Ohio in late 2020. Participants were randomly assigned to receive placebo or resveratrol. Both groups received a single dose of Vitamin D3 which was used as an adjunct. The primary outcome measure was hospitalization within 21 days of symptom onset; secondary measures were ER visits, incidence of pneumonia, and incidence of pulmonary embolism. Five patients chose not to participate after randomization. Twenty-one-day outcome was determined of all one hundred participants (mean [SD] age 55.6 [8.8] years; 61% female). There were no clinically significant adverse events attributed to resveratrol. Outpatients in this phase 2 study treated with resveratrol had a lower incidence compared to placebo of: hospitalization (2% vs. 6%, RR 0.33, 95% CI 0.04–3.10), COVID-19 related ER visits (8% vs. 14%, RR 0.57, 95% CI 0.18–1.83), and pneumonia (8% vs. 16%, RR 0.5, 95% CI 0.16–1.55). One patient (2%) in each group developed pulmonary embolism (RR 1.00, 95% CI: 0.06–15.55). This underpowered study was limited by small sample size and low incidence of primary adverse events consequently the results are statistically similar between treatment arms. A larger trial could determine efficacy.Trial Registrations: ClinicalTrials.gov NCT04400890 26/05/2020; FDA IND #150033 05/05/2020.
Resveratrol as an Adjunctive Therapy for Excessive Oxidative Stress in Aging COVID-19 Patients, Antioxidants, doi:10.3390/antiox10091440
,
The coronavirus disease 2019 (COVID-19) pandemic continues to burden healthcare systems worldwide. COVID-19 symptoms are highly heterogeneous, and the patient may be asymptomatic or may present with mild to severe or fatal symptoms. Factors, such as age, sex, and comorbidities, are key determinants of illness severity and progression. Aging is accompanied by multiple deficiencies in interferon production by dendritic cells or macrophages in response to viral infections, resulting in dysregulation of inflammatory immune responses and excess oxidative stress. Age-related dysregulation of immune function may cause a more obvious pathophysiological response to SARS-CoV-2 infection in elderly patients and may accelerate the risk of biological aging, even after recovery. For more favorable treatment outcomes, inhibiting viral replication and dampening inflammatory and oxidative responses before induction of an overt cytokine storm is crucial. Resveratrol is a potent antioxidant with antiviral activity. Herein, we describe the reasons for impaired interferon production, owing to aging, and the impact of aging on innate and adaptive immune responses to infection, which leads to inflammation distress and immunosuppression, thereby causing fulminant disease. Additionally, the molecular mechanism by which resveratrol could reverse a state of excessive basal inflammatory and oxidative stress and low antiviral immunity is discussed.
Identifying Mechanism of RSV for the Treatment of COVID-19 and Idiopathic Pulmonary Fibrosis via Suppressing Inflammation Response Through IL-17 Signaling Pathway from the Perspectives of in silico Study, Current Medicinal Chemistry, doi:10.2174/0109298673308841240930044555
,
Background: Both coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) could cause severe pulmonary injury and have extremely dismal prognoses with a high risk of mortality. Resveratrol (RSV), a natural polyphenol, has promising potential in the treatment of viral infection and pulmonary fibrosis. Objective: The purpose of this research was to investigate the unclear mechanism of RSV as an anti-COVID-19 and IPF therapy. Method: Utilizing relevant databases, the intersection of genes related to IPF, COVID-19, and possible RSV targets was discovered. Then the obtained targets were investigated using GO and KEGG analysis, TP and PPI network analysis. Furthermore, the binding affinities between core targets and RSV were calculated using molecular docking. Results: The 1101 COVID-19 targets, 2166 IPF targets, and 341 RSV targets intersected with 21 overlapping targets. PPI network reveals the interactions among targets and TP network reveals interactions between targets and pathways. Five targets including JUN, CCL2, CXCL8, IL6, and SERPINE1 were identified as the core targets through two network analyses. GO analysis demonstrated chemotaxis, inflammatory response and angiogenesis were the significant pathophysiological processes. Combing TP network analysis and KEGG analysis, IL-17 signaling pathway was considered as the significant pathway. Except for JUN, molecular docking showed the binding energies of other four targets were lower than -5 kcal/mol indicating intimate interactions between RSV and other targets. Conclusions: Our research elucidate the targets, pathways and pathophysiological processes of RSV involved in effects of anti-COVID-19 and IPF, suggesting RSV could be a therapeutic candidate for reducing infection and fibrosis.
Decoding the intricacies: a comprehensive analysis of microRNAs in the pathogenesis, diagnosis, prognosis and therapeutic strategies for COVID-19, Frontiers in Medicine, doi:10.3389/fmed.2024.1430974
,
The pandemic of coronavirus disease-19 (COVID-19), provoked by the appearance of a novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), required a worldwide healthcare emergency. This has elicited an immediate need for accelerated research into its mechanisms of disease, criteria for diagnosis, methods for forecasting outcomes, and treatment approaches. microRNAs (miRNAs), are diminutive RNA molecules, that are non-coding and participate in gene expression regulation post-transcriptionally, having an important participation in regulating immune processes. miRNAs have granted substantial interest in their impact on viral replication, cell proliferation, and modulation of how the host’s immune system responds. This narrative review delves into host miRNAs’ multifaceted roles within the COVID-19 context, highlighting their involvement in disease progression, diagnostics, and prognostics aspects, given their stability in biological fluids and varied expression profiles when responding to an infection. Additionally, we discuss complicated interactions between SARS-CoV-2 and host cellular machinery facilitated by host miRNAs revealing how dysregulation of host miRNA expression profiles advances viral replication, immune evasion, and inflammatory responses. Furthermore, it investigates the potential of host miRNAs as therapeutic agents, whether synthetic or naturally occurring, which could be harnessed to either mitigate harmful inflammation or enhance antiviral responses. However, searching more deeply is needed to clarify how host’s miRNAs are involved in pathogenesis of COVID-19, its diagnosis processes, prognostic assessments, and treatment approaches for patients.
Potential of traditional medicines in alleviating COVID-19 symptoms, Frontiers in Pharmacology, doi:10.3389/fphar.2024.1452616
,
This review discusses the prevention and treatment of coronavirus disease 2019 (COVID-19) caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Mutations in its spike glycoprotein have driven the emergence of variants with high transmissibility and immune escape capabilities. Some antiviral drugs are ineffective against the BA.2 subvariant at the authorized dose. Recently, 150 natural metabolites have been identified as potential candidates for development of new anti-COVID-19 drugs with higher efficacy and lower toxicity than those of existing therapeutic agents. Botanical drug-derived bioactive molecules have shown promise in dampening the COVID-19 cytokine storm and thus preventing pulmonary fibrosis, as they exert a strong binding affinity for viral proteins and inhibit their activity. The Health Ministry of Thailand has approved Andrographis paniculata (Jap. Senshinren) extracts to treat COVID-19. In China, over 85% of patients infected with SARS-CoV-2 receive treatments based on traditional Chinese medicine. A comprehensive map of the stages and pathogenetic mechanisms related to the disease and effective natural products to treat and prevent COVID-19 are presented. Approximately 10% of patients with COVID-19 are affected by long COVID, and COVID-19 infection impairs mitochondrial DNA. As the number of agents to treat COVID-19 is limited, adjuvant botanical drug treatments including vitamin C and E supplementation may reduce COVID-19 symptoms and inhibit progression to long COVID.
3-chymotrypsin-like protease in SARS-CoV-2, Bioscience Reports, doi:10.1042/BSR20231395
,
Abstract Coronaviruses constitute a significant threat to the human population. Severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, is a highly pathogenic human coronavirus that has caused the coronavirus disease 2019 (COVID-19) pandemic. It has led to a global viral outbreak with an exceptional spread and a high death toll, highlighting the need for effective antiviral strategies. 3-Chymotrypsin-like protease (3CLpro), the main protease in SARS-CoV-2, plays an indispensable role in the SARS-CoV-2 viral life cycle by cleaving the viral polyprotein to produce 11 individual non-structural proteins necessary for viral replication. 3CLpro is one of two proteases that function to produce new viral particles. It is a highly conserved cysteine protease with identical structural folds in all known human coronaviruses. Inhibitors binding with high affinity to 3CLpro will prevent the cleavage of viral polyproteins, thus impeding viral replication. Multiple strategies have been implemented to screen for inhibitors against 3CLpro, including peptide-like and small molecule inhibitors that covalently and non-covalently bind the active site, respectively. In addition, allosteric sites of 3CLpro have been identified to screen for small molecules that could make non-competitive inhibitors of 3CLpro. In essence, this review serves as a comprehensive guide to understanding the structural intricacies and functional dynamics of 3CLpro, emphasizing key findings that elucidate its role as the main protease of SARS-CoV-2. Notably, the review is a critical resource in recognizing the advancements in identifying and developing 3CLpro inhibitors as effective antiviral strategies against COVID-19, some of which are already approved for clinical use in COVID-19 patients.
Structure-based drug repurposing against COVID-19 and emerging infectious diseases: methods, resources and discoveries, Briefings in Bioinformatics, doi:10.1093/bib/bbab113
,
AbstractTo attain promising pharmacotherapies, researchers have applied drug repurposing (DR) techniques to discover the candidate medicines to combat the coronavirus disease 2019 (COVID-19) outbreak. Although many DR approaches have been introduced for treating different diseases, only structure-based DR (SBDR) methods can be employed as the first therapeutic option against the COVID-19 pandemic because they rely on the rudimentary information about the diseases such as the sequence of the severe acute respiratory syndrome coronavirus 2 genome. Hence, to try out new treatments for the disease, the first attempts have been made based on the SBDR methods which seem to be among the proper choices for discovering the potential medications against the emerging and re-emerging infectious diseases. Given the importance of SBDR approaches, in the present review, well-known SBDR methods are summarized, and their merits are investigated. Then, the databases and software applications, utilized for repurposing the drugs against COVID-19, are introduced. Besides, the identified drugs are categorized based on their targets. Finally, a comparison is made between the SBDR approaches and other DR methods, and some possible future directions are proposed.
Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches, Frontiers in Immunology, doi:10.3389/fimmu.2023.1282859
,
IntroductionThe COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. MethodsExtensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors.ResultsResults revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. DiscussionThe key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.
Effect of herbal compounds on inhibition of coronavirus; A systematic review and meta-analysis, Authorea, Inc., doi:10.22541/au.170668000.04030360/v1
,
The outbreak of the new coronavirus (COVID-19) has been transferred exponentially. There are many articles that have found the inhibitory effect of plant extracts or plant compounds on the coronavirus family. In this study, we want to use systematic review and meta-analysis to answer the question of which herbal compound can be more effective against the coronavirus. The present study is based on the guidelines for conducting meta-analyzes. An extensive search was conducted in the electronic database, and based on the inclusion and exclusion criteria, articles were selected and data screening was performed. Quality control of articles was performed. Data analysis was carried out in STATA software. The results showed that alkaloid compounds had a good effect in controlling the coronavirus and reducing viral titer. Trypthantrin, Sambucus extract, S. cusia extract, Boceprevir and Indigole B, dioica agglutinin urtica had a good effect on reducing the virus titer but their selectivity index has not been reported and it is recommended to determine for these compounds. Also among the compounds that had the greatest effect on virus inhibition, including Saikosaponins B2, SaikosaponinsD, SaikosaponinsA and Phillyrin, had an acceptable selectivity index greater than 10. Andrographolide showed the highest selectivity index on SARS-COV2, while virus titration and virus inhibition were not reported. The small number of studies that used alkaloid compounds was one of the limitations and it is suggested to investigate the effect of more alkaloid compounds against the coronavirus for verifying its effect.
Identification of Drugs Blocking SARS-CoV-2 Infection using Human Pluripotent Stem Cell-derived Colonic Organoids, bioRxiv, doi:10.1101/2020.05.02.073320
,
Summary ParagraphThe current COVID-19 pandemic is caused by SARS-coronavirus 2 (SARS-CoV-2). There are currently no therapeutic options for mitigating this disease due to lack of a vaccine and limited knowledge of SARS-CoV-2 biology. As a result, there is an urgent need to create new disease models to study SARS-CoV-2 biology and to screen for therapeutics using human disease-relevant tissues. COVID-19 patients typically present with respiratory symptoms including cough, dyspnea, and respiratory distress, but nearly 25% of patients have gastrointestinal indications including anorexia, diarrhea, vomiting, and abdominal pain. Moreover, these symptoms are associated with worse COVID-19 outcomes1. Here, we report using human pluripotent stem cell-derived colonic organoids (hPSC-COs) to explore the permissiveness of colonic cell types to SARS-CoV-2 infection. Single cell RNA-seq and immunostaining showed that the putative viral entry receptor ACE2 is expressed in multiple hESC-derived colonic cell types, but highly enriched in enterocytes. Multiple cell types in the COs can be infected by a SARS-CoV-2 pseudo-entry virus, which was further validated in vivo using a humanized mouse model. We used hPSC-derived COs in a high throughput platform to screen 1280 FDA-approved drugs against viral infection. Mycophenolic acid and quinacrine dihydrochloride were found to block the infection of SARS-CoV-2 pseudo-entry virus in COs both in vitro and in vivo, and confirmed to block infection of SARS-CoV-2 virus. This study established both in vitro and in vivo organoid models to investigate infection of SARS-CoV-2 disease-relevant human colonic cell types and identified drugs that blocks SARS-CoV-2 infection, suitable for rapid clinical testing.
Potential Target Discovery and Drug Repurposing for Coronaviruses: Study Involving a Knowledge Graph–Based Approach, Journal of Medical Internet Research, doi:10.2196/45225
,
Background The global pandemics of severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19 have caused unprecedented crises for public health. Coronaviruses are constantly evolving, and it is unknown which new coronavirus will emerge and when the next coronavirus will sweep across the world. Knowledge graphs are expected to help discover the pathogenicity and transmission mechanism of viruses. Objective The aim of this study was to discover potential targets and candidate drugs to repurpose for coronaviruses through a knowledge graph–based approach. Methods We propose a computational and evidence-based knowledge discovery approach to identify potential targets and candidate drugs for coronaviruses from biomedical literature and well-known knowledge bases. To organize the semantic triples extracted automatically from biomedical literature, a semantic conversion model was designed. The literature knowledge was associated and integrated with existing drug and gene knowledge through semantic mapping, and the coronavirus knowledge graph (CovKG) was constructed. We adopted both the knowledge graph embedding model and the semantic reasoning mechanism to discover unrecorded mechanisms of drug action as well as potential targets and drug candidates. Furthermore, we have provided evidence-based support with a scoring and backtracking mechanism. Results The constructed CovKG contains 17,369,620 triples, of which 641,195 were extracted from biomedical literature, covering 13,065 concept unique identifiers, 209 semantic types, and 97 semantic relations of the Unified Medical Language System. Through multi-source knowledge integration, 475 drugs and 262 targets were mapped to existing knowledge, and 41 new drug mechanisms of action were found by semantic reasoning, which were not recorded in the existing knowledge base. Among the knowledge graph embedding models, TransR outperformed others (mean reciprocal rank=0.2510, Hits@10=0.3505). A total of 33 potential targets and 18 drug candidates were identified for coronaviruses. Among them, 7 novel drugs (ie, quinine, nelfinavir, ivermectin, asunaprevir, tylophorine, Artemisia annua extract, and resveratrol) and 3 highly ranked targets (ie, angiotensin converting enzyme 2, transmembrane serine protease 2, and M protein) were further discussed. Conclusions We showed the effectiveness of a knowledge graph–based approach in potential target discovery and drug repurposing for coronaviruses. Our approach can be extended to other viruses or diseases for biomedical knowledge discovery and relevant applications.
COVID-19 Therapeutic Potential of Natural Products, International Journal of Molecular Sciences, doi:10.3390/ijms24119589
,
Despite the fact that coronavirus disease 2019 (COVID-19) treatment and management are now considerably regulated, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still one of the leading causes of death in 2022. The availability of COVID-19 vaccines, FDA-approved antivirals, and monoclonal antibodies in low-income countries still poses an issue to be addressed. Natural products, particularly traditional Chinese medicines (TCMs) and medicinal plant extracts (or their active component), have challenged the dominance of drug repurposing and synthetic compound libraries in COVID-19 therapeutics. Their abundant resources and excellent antiviral performance make natural products a relatively cheap and readily available alternative for COVID-19 therapeutics. Here, we deliberately review the anti-SARS-CoV-2 mechanisms of the natural products, their potency (pharmacological profiles), and application strategies for COVID-19 intervention. In light of their advantages, this review is intended to acknowledge the potential of natural products as COVID-19 therapeutic candidates.
Pharmaceutical approaches for COVID-19: An update on current therapeutic opportunities, Acta Pharmaceutica, doi:10.2478/acph-2023-0014
,
Abstract SARS-CoV-2, a newly discovered coronavirus, has been linked to the COVID-19 pandemic and is currently an important public health issue. Despite all the work done to date around the world, there is still no viable treatment for COVID-19. This study examined the most recent evidence on the efficacy and safety of several therapeutic options available including natural substances, synthetic drugs and vaccines in the treatment of COVID-19. Various natural compounds such as sarsapogenin, lycorine, biscoclaurine, vitamin B12, glycyrrhizic acid, riboflavin, resveratrol and kaempferol, various vaccines and drugs such as AZD1222, mRNA-1273, BNT162b2, Sputnik V, and remdesivir, lopinavir, favipiravir, darunavir, oseltamivir, and umifenovir, resp., have been discussed comprehensively. We attempted to provide exhaustive information regarding the various prospective therapeutic approaches available in order to assist researchers and physicians in treating COVID-19 patients.
A Brief Review on Medicinal Plants-At-Arms against COVID-19, Interdisciplinary Perspectives on Infectious Diseases, doi:10.1155/2023/7598307
,
COVID-19 pandemic caused by the novel SARS-CoV-2 has impacted human livelihood globally. Strenuous efforts have been employed for its control and prevention; however, with recent reports on mutated strains with much higher infectivity, transmissibility, and ability to evade immunity developed from previous SARS-CoV-2 infections, prevention alternatives must be prepared beforehand in case. We have perused over 128 recent works (found on Google Scholar, PubMed, and ScienceDirect as of February 2023) on medicinal plants and their compounds for anti-SARS-CoV-2 activity and eventually reviewed 102 of them. The clinical application and the curative effect were reported high in China and in India. Accordingly, this review highlights the unprecedented opportunities offered by medicinal plants and their compounds, candidates as the therapeutic agent, against COVID-19 by acting as viral protein inhibitors and immunomodulator in (32 clinical trials and hundreds of in silico experiments) conjecture with modern science. Moreover, the associated foreseeable challenges for their viral outbreak management were discussed in comparison to synthetic drugs.
Food Plant Secondary Metabolites Antiviral Activity and Their Possible Roles in SARS-CoV-2 Treatment: An Overview, Molecules, doi:10.3390/molecules28062470
,
Natural products and plant extracts exhibit many biological activities, including that related to the defense mechanisms against parasites. Many studies have investigated the biological functions of secondary metabolites and reported evidence of antiviral activities. The pandemic emergencies have further increased the interest in finding antiviral agents, and efforts are oriented to investigate possible activities of secondary plant metabolites against human viruses and their potential application in treating or preventing SARS-CoV-2 infection. In this review, we performed a comprehensive analysis of studies through in silico and in vitro investigations, also including in vivo applications and clinical trials, to evaluate the state of knowledge on the antiviral activities of secondary metabolites against human viruses and their potential application in treating or preventing SARS-CoV-2 infection, with a particular focus on natural compounds present in food plants. Although some of the food plant secondary metabolites seem to be useful in the prevention and as a possible therapeutic management against SARS-CoV-2, up to now, no molecules can be used as a potential treatment for COVID-19; however, more research is needed.
Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites, Scientific Reports, doi:10.1038/s41598-023-31764-9
,
AbstractSARS-CoV-2 has been responsible for the major worldwide pandemic of COVID-19. Despite the enormous success of vaccination campaigns, virus infections are still prevalent and effective antiviral therapies are urgently needed. Viroporins are essential for virus replication and release, and are thus promising therapeutic targets. Here, we studied the expression and function of recombinant ORF3a viroporin of SARS-CoV-2 using a combination of cell viability assays and patch-clamp electrophysiology. ORF3a was expressed in HEK293 cells and transport to the plasma membrane verified by a dot blot assay. Incorporation of a membrane-directing signal peptide increased plasma membrane expression. Cell viability tests were carried out to measure cell damage associated with ORF3a activity, and voltage-clamp recordings verified its channel activity. The classical viroporin inhibitors amantadine and rimantadine inhibited ORF3a channels. A series of ten flavonoids and polyphenolics were studied. Kaempferol, quercetin, epigallocatechin gallate, nobiletin, resveratrol and curcumin were ORF3a inhibitors, with IC50 values ranging between 1 and 6 µM, while 6-gingerol, apigenin, naringenin and genistein were inactive. For flavonoids, inhibitory activity could be related to the pattern of OH groups on the chromone ring system. Thus, the ORF3a viroporin of SARS-CoV-2 may indeed be a promising target for antiviral drugs.
Antiviral and Anti-Inflammatory Plant-Derived Bioactive Compounds and Their Potential Use in the Treatment of COVID-19-Related Pathologies, Journal of Xenobiotics, doi:10.3390/jox12040020
,
The highly contagious coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic and public health emergency as it has taken the lives of over 5.7 million in more than 180 different countries. This disease is characterized by respiratory tract symptoms, such as dry cough and shortness of breath, as well as other symptoms, including fever, chills, and fatigue. COVID-19 is also characterized by the excessive release of cytokines causing inflammatory injury to the lungs and other organs. It is advised to undergo precautionary measures, such as vaccination, social distancing, use of masks, hygiene, and a healthy diet. This review is aimed at summarizing the pathophysiology of COVID-19 and potential biologically active compounds (bioactive) found in plants and plant food. We conclude that many plant food bioactive compounds exhibit antiviral and anti-inflammatory properties and support in attenuating organ damage due to reduced cytokine release and improving the recovery process from COVID-19 infection.
Inhibiting NF-κB During Cytokine Storm in COVID-19: Potential Role of Natural Products as a Promising Therapeutic Approach, MDPI AG, doi:10.20944/preprints202106.0130.v1
,
Many inflammatory mechanisms are involved in the pathophysiology of COVID-19 infection. COVID-19 inhibits IFN antiviral responses, so we should expect an out-of-control viral replication. “Cytokine storms” occur due to the over-production of pro-inflammatory cytokines after an influx of neutrophils and monocytes/macrophages and may be responsible for the immunopathology of the lung involvement. Several cascades have been reported in the activation process of NF-κB. In this paper, to find new therapeutic options for COVID-19 infection, we reviewed some natural products that could potentially inhibit the NF-κB pathway. We found that sevoflurane, quercetin, resveratrol, curcumin, KIOM-C, bergenin, garcinia kola, shenfu, piperlongumine, wogonin, oroxylin, plantamajoside, naringin, ginseng, kaempferol, allium sativum L, illicium henryi, isoliquiritigenin, lianhua qingwen, magnoflorine, and ma Huang Tang might be effective in inhibiting the NF-KB pathway. These natural products could be helpful in the control of COVID-19 infections. However, larger clinical trials are needed to ascertain the efficacy of these products fully.
Plant Extracts and SARS-CoV-2: Research and Applications, Life, doi:10.3390/life13020386
,
The recent pandemic of COVID-19 caused by the SARS-CoV-2 virus has brought upon the world an unprecedented challenge. During its acute dissemination, a rush for vaccines started, making the scientific community come together and contribute to the development of efficient therapeutic agents and vaccines. Natural products have been used as sources of individual molecules and extracts capable of inhibiting/neutralizing several microorganisms, including viruses. Natural extracts have shown effective results against the coronavirus family, when first tested in the outbreak of SARS-CoV-1, back in 2002. In this review, the relationship between natural extracts and SARS-CoV is discussed, while also providing insight into misinformation regarding the use of plants as possible therapeutic agents. Studies with plant extracts on coronaviruses are presented, as well as the main inhibition assays and trends for the future regarding the yet unknown long-lasting effects post-infection with SARS-CoV-2.
Enhanced compound-protein binding affinity prediction by representing protein multimodal information via a coevolutionary strategy, Briefings in Bioinformatics, doi:10.1093/bib/bbac628
,
Abstract Due to the lack of a method to efficiently represent the multimodal information of a protein, including its structure and sequence information, predicting compound-protein binding affinity (CPA) still suffers from low accuracy when applying machine-learning methods. To overcome this limitation, in a novel end-to-end architecture (named FeatNN), we develop a coevolutionary strategy to jointly represent the structure and sequence features of proteins and ultimately optimize the mathematical models for predicting CPA. Furthermore, from the perspective of data-driven approach, we proposed a rational method that can utilize both high- and low-quality databases to optimize the accuracy and generalization ability of FeatNN in CPA prediction tasks. Notably, we visually interpret the feature interaction process between sequence and structure in the rationally designed architecture. As a result, FeatNN considerably outperforms the state-of-the-art (SOTA) baseline in virtual drug evaluation tasks, indicating the feasibility of this approach for practical use. FeatNN provides an outstanding method for higher CPA prediction accuracy and better generalization ability by efficiently representing multimodal information of proteins via a coevolutionary strategy.
Phytochemicals in the Prevention and Treatment of SARS-CoV-2—Clinical Evidence, Antibiotics, doi:10.3390/antibiotics11111614
,
The first case of SARS-CoV-2 infection was reported in December 2019. Due to the rapid spread of the disease and the lack of adequate therapy, the use of plants that have a long history in the treatment of viral infections has often been considered. The aim of this paper is to provide a brief review of the literature on the use of phytochemicals during the new pandemic. An extensive search of published works was performed through platforms Google Scholar, PubMed, Science Direct, Web of Science and Clinicaltrials.gov. Numerous preclinical studies on the use of phytochemicals (quercetin, curcumin, baicalin, kaempferol, resveratrol, glycyrrhizin, lycorine, colchicine) against SARS-CoV-2 have shown that these components can be effective in the prevention and treatment of this infection. Clinical research has proven that the use of black cumin and green propolis as well as quercetin has positive effects. As for other phytochemicals, in addition to preclinical testing which has already been carried out, it would be necessary to conduct clinical tests in order to assert their effectiveness. For those phytochemicals whose clinical efficacy has been proven, it would be necessary to conduct research on a larger number of patients, so that the conclusions are more representative.
Target-agnostic drug prediction integrated with medical record analysis uncovers differential associations of statins with increased survival in COVID-19 patients, PLOS Computational Biology, doi:10.1371/journal.pcbi.1011050 (Table 2)
,
Drug repurposing requires distinguishing established drug class targets from novel molecule-specific mechanisms and rapidly derisking their therapeutic potential in a time-critical manner, particularly in a pandemic scenario. In response to the challenge to rapidly identify treatment options for COVID-19, several studies reported that statins, as a drug class, reduce mortality in these patients. However, it is unknown if different statins exhibit consistent function or may have varying therapeutic benefit. A Bayesian network tool was used to predict drugs that shift the host transcriptomic response to SARS-CoV-2 infection towards a healthy state. Drugs were predicted using 14 RNA-sequencing datasets from 72 autopsy tissues and 465 COVID-19 patient samples or from cultured human cells and organoids infected with SARS-CoV-2. Top drug predictions included statins, which were then assessed using electronic medical records containing over 4,000 COVID-19 patients on statins to determine mortality risk in patients prescribed specific statins versus untreated matched controls. The same drugs were tested in Vero E6 cells infected with SARS-CoV-2 and human endothelial cells infected with a related OC43 coronavirus. Simvastatin was among the most highly predicted compounds (14/14 datasets) and five other statins, including atorvastatin, were predicted to be active in > 50% of analyses. Analysis of the clinical database revealed that reduced mortality risk was only observed in COVID-19 patients prescribed a subset of statins, including simvastatin and atorvastatin. In vitro testing of SARS-CoV-2 infected cells revealed simvastatin to be a potent direct inhibitor whereas most other statins were less effective. Simvastatin also inhibited OC43 infection and reduced cytokine production in endothelial cells. Statins may differ in their ability to sustain the lives of COVID-19 patients despite having a shared drug target and lipid-modifying mechanism of action. These findings highlight the value of target-agnostic drug prediction coupled with patient databases to identify and clinically evaluate non-obvious mechanisms and derisk and accelerate drug repurposing opportunities.
Consumption of Phenolic-Rich Food and Dietary Supplements as a Key Tool in SARS-CoV-19 Infection, Foods, doi:10.3390/foods10092084
,
The first cases of COVID-19, which is caused by the SARS-CoV-2, were reported in December 2019. The vertiginous worldwide expansion of SARS-CoV-2 caused the collapse of health systems in several countries due to the high severity of the COVID-19. In addition to the vaccines, the search for active compounds capable of preventing and/or fighting the infection has been the main direction of research. Since the beginning of this pandemic, some evidence has highlighted the importance of a phenolic-rich diet as a strategy to reduce the progression of this disease, including the severity of the symptoms. Some of these compounds (e.g., curcumin, gallic acid or quercetin) already showed capacity to limit the infection of viruses by inhibiting entry into the cell through its binding to protein Spike, regulating the expression of angiotensin-converting enzyme 2, disrupting the replication in cells by inhibition of viral proteases, and/or suppressing and modulating the host’s immune response. Therefore, this review intends to discuss the most recent findings on the potential of phenolics to prevent SARS-CoV-2.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.