Conv. Plasma
Nigella Sativa
Peg.. Lambda

Home COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta
Cannabidiol Meta Molnupiravir Meta
Colchicine Meta
Conv. Plasma Meta
Curcumin Meta Nigella Sativa Meta
Ensovibep Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Peg.. Lambda Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Ivermectin Meta
Lactoferrin Meta

Azelastine for COVID-19

Azelastine has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Konrat et al., The Anti-histamine Azelastine, Identified by Computational Drug Repurposing, Inhibits SARS-CoV-2 Infection in Reconstituted Human Nasal Tissue In Vitro, bioRxiv, doi:10.1101/2020.09.15.296228
ABSTRACTBackgroundThe COVID-19 pandemic is an enormous threat for healthcare systems and economies worldwide that urgently demands effective preventive and therapeutic strategies. Unlike the development of vaccines and new drugs specifically targeting SARS-CoV-2, repurposing of approved or clinically tested drugs can provide an immediate solution.MethodsWe applied a novel computational approach to search among approved and clinically tested drugs from the DrugBank database. Candidates were selected based on Shannon entropy homology and predefined activity profiles of three small molecules with proven anti-SARS-CoV activity and a published data set. Antiviral activity of a predicted drug, azelastine, was tested in vitro in SARS-CoV-2 infection assays with Vero E6 monkey kidney epithelial cells and reconstituted human nasal tissue. The effect on viral replication was assessed by quantification of viral genomes by droplet digital PCR.FindingsThe computational approach with four independent queries identified major drug families, most often and in overlapping fashion anti-infective, anti-inflammatory, anti-hypertensive, anti-histamine and neuroactive drugs. Azelastine, an histamine 1 receptor-blocker, was predicted in multiple screens, and based on its attractive safety profile and availability in nasal formulation, was selected for experimental testing. Azelastine significantly reduced cytopathic effect and SARS-CoV-2 infection of Vero E6 cells with an EC50 of ∼6 μM both in a preventive and treatment setting. Furthermore, azelastine in a commercially available nasal spray tested at 5-fold dilution was highly potent in inhibiting viral propagation in SARS-CoV-2 infected reconstituted human nasal tissue.InterpretationsAzelastine, an anti-histamine, available in nasal sprays developed against allergic rhinitis may be considered as a topical prevention or treatment of nasal colonization with SARS-CoV-2. As such, it could be useful in reducing viral spread and prophylaxis of COVID-19. Ultimately, its potential benefit should be proven in clinical studies.Fundingprovided by the Hungarian government to the National Laboratory of Virology and by CEBINA GmbH.
Hosseini et al., Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, Precision Clinical Medicine, doi:10.1093/pcmedi/pbab001
AbstractThe pandemic of novel coronavirus disease 2019 (COVID-19) has rampaged the world, with more than 58.4 million confirmed cases and over 1.38 million deaths across the world by 23 November 2020. There is an urgent need to identify effective drugs and vaccines to fight against the virus. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the family of coronaviruses consisting of four structural and 16 non-structural proteins (NSP). Three non-structural proteins, main protease (Mpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase (RdRp), are believed to have a crucial role in replication of the virus. We applied computational ligand-receptor binding modeling and performed comprehensive virtual screening on FDA-approved drugs against these three SARS-CoV-2 proteins using AutoDock Vina, Glide, and rDock. Our computational studies identified six novel ligands as potential inhibitors against SARS-CoV-2, including antiemetics rolapitant and ondansetron for Mpro; labetalol and levomefolic acid for PLpro; and leucal and antifungal natamycin for RdRp. Molecular dynamics simulation confirmed the stability of the ligand-protein complexes. The results of our analysis with some other suggested drugs indicated that chloroquine and hydroxychloroquine had high binding energy (low inhibitory effect) with all three proteins—Mpro, PLpro, and RdRp. In summary, our computational molecular docking approach and virtual screening identified some promising candidate SARS-CoV-2 inhibitors that may be considered for further clinical studies.
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.