A model-based approach to improve intranasal sprays for respiratory viral infections
Saikat Basu, Mohammad Mehedi Hasan Akash, Yueying Lao, Pallavi A Balivada, Phoebe Ato, Nogaye K Ka, Austin Mituniewicz, Zachary Silfen, Julie Suman, Arijit Chakravarty, Diane Joseph-Mccarthy
doi:10.1101/2022.01.26.22269854
Drug delivery for viral respiratory infections, such as SARS-CoV-2, can be enhanced significantly by targeting the nasopharynx, which is the dominant initial infection site in the upper airway, for example by nasal sprays. However, under the standard recommended spray usage protocol ("Current Use", or CU), the nozzle enters the nose almost vertically, resulting in sub-optimal deposition of drug droplets at the nasopharynx. Using computational fluid dynamics simulations in two anatomic nasal geometries, along with experimental validation of the generic findings in a different third subject, we have identified a new "Improved Use" (or, IU) spray protocol. It entails pointing the spray bottle at a shallower angle (almost horizontally), aiming slightly toward the cheeks. We have simulated the performance of this protocol for conically injected spray droplet sizes of 1 -24 µm, at two breathing rates: 15 and 30 L/min. The lower flowrate corresponds to resting breathing and follows a viscouslaminar model; the higher rate, standing in for moderate breathing conditions, is turbulent and is tracked via Large Eddy Simulation. The results show that (a) droplets sized between ∼ 6 -14 µm are most efficient at direct landing over the nasopharyngeal viral infection hot-spot; and (b) targeted drug delivery via IU outperforms CU by approximately 2 orders-of-magnitude, under the two tested inhalation conditions. Also quite importantly, the improved delivery strategy, facilitated by the IU protocol, is found to be robust to small perturbations in spray direction, underlining the practical utility of this simple change in nasal spray administration protocol.
Author contributions SB, DJM, AC conceived this study; SB developed the study protocol, the anatomic reconstructions and drafted the manuscript; MMHA carried out the physical experiments and the theoretical analysis; SB, YL, PAB, PA, NKK performed the numerical simulations; AM, ZS processed the computational data; JS tested the overthe-counter spray products; SB and DJM jointly supervised the student researchers (MMHA, YL, PAB, PA, NKK, AM, ZS).
Conflicts of interest The authors declare no competing interests.
References
Akash, Mituniewicz, Lao, Balivada, Ato et al., A better way to spray?-a model-based optimization of nasal spray use protocols, Bulletin of the American Physical Society
Baghernezhad, Abouali, Different SGS models in Large Eddy Simulation of 90 degree square cross-section bends, Journal of Turbulence
Balachandar, A scaling analysis for point-particle approaches to turbulent multiphase flows, International Journal of Multiphase Flow
Basu, Akash, Hochberg, Senior, Joseph-Mccarthy et al., From SARS-CoV-2 infection to COVID-19 morbidity: an in silico projection of virion flow rates to the lower airway via nasopharyngeal fluid boluses, Rhinology Online
Basu, Computational characterization of inhaled droplet transport to the nasopharynx, Scientific Reports
Basu, Farzal, Kimbell, Magical" fluid pathways: inspired airflow corridors for optimal drug delivery to human sinuses
Basu, Frank-Ito, Kimbell, On computational fluid dynamics models for sinonasal drug transport: Relevance of nozzle subtraction and nasal vestibular dilation, International Journal for Numerical Methods in Biomedical Engineering
Basu, Hochberg, Senior, Joseph-Mccarthy, Chakravarty, From SARS-CoV-2 infection to COVID-19 disease: a proposed mechanism for viral spread to the lower airway based on in silico estimation of virion flow rates, medRxiv
Basu, Holbrook, Kudlaty, Fasanmade, Wu et al., Numerical evaluation of spray position for improved nasal drug delivery, Scientific Reports
Basu, Khawaja, Rizvi, Gong, Yeung et al., Evaluation of patient experience for a computationally-guided intranasal spray protocol to augment therapeutic penetration, medRxiv
Basu, Stremler, Exploring the dynamics of '2P' wakes with reflective symmetry using point vortices, Journal of Fluid Mechanics
Basu, Stremler, On the motion of two point vortex pairs with glide-reflective symmetry in a periodic strip, Physics of Fluids
Basu, Witten, Kimbell, Influence of localized mesh refinement on numerical simulations of post-surgical sinonasal airflow, Journal of Aerosol Medicine and Pulmonary Drug Delivery
Benninger, Hadley, Osguthorpe, Marple, Leopold et al., Techniques of intranasal steroid use, Otolaryngology -Head and Neck Surgery
Cheng, Holmes, Gao, Guilmette, Li et al., Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway, Journal of Aerosol Medicine
Doorly, Taylor, Schroter, Mechanics of airflow in the human nasal airways, Respiratory Physiology & Neurobiology
Farzal, Basu, Burke, Fasanmade, Lopez et al., Comparative study of simulated nebulized and spray particle deposition in chronic rhinosinusitis patients, International Forum of Allergy & Rhinology
Finlay, The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction
Ford, Cao, Papanikolas, Kato, Boucher et al., Molecular dynamics simulations to explore the structure and rheological properties of normal and hyperconcentrated airway mucus, Studies in Applied Mathematics
Frank-Ito, Wofford, Schroeter, Kimbell, Influence of mesh density on airflow and particle deposition in sinonasal airway modeling, Journal of Aerosol Medicine and Pulmonary Drug Delivery
Garcia, Schroeter, Segal, Stanek, Foureman et al., Dosimetry of nasal uptake of water-soluble and reactive gases: a first study of interhuman variability, Inhalation Toxicology
He, Lau, Wu, Deng, Wang et al., Temporal dynamics in viral shedding and transmissibility of COVID-19, Nature Medicine
Hosseini, Schuman, Walenga, Wilkins, Babiskin et al., Use of anatomically-accurate 3-dimensional nasal airway models of adult human subjects in a novel methodology to identify and evaluate the internal nasal valve, Computers in Biology and Medicine
Hou, Okuda, Edwards, Martinez, Asakura et al., SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract, Cell
Inthavong, Ma, Shang, Dong, Chetty et al., Geometry and airflow dynamics analysis in the nasal cavity during inhalation, Clinical Biomechanics
Kimbell, Basu, Farzal, Senior, Characterizing nasal delivery in 3D models before and after sinus surgery, Respiratory Drug Delivery
Kimbell, Basu, Garcia, Frank-Ito, Lazarow et al., Upper airway reconstruction using long-range optical coherence tomography: Effects of airway curvature on airflow resistance, Lasers in Surgery and Medicine
Kundoor, Dalby, Effect of formulation-and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast, Pharmaceutical Research
Liu, Doub, Guo, Assessment of the influence factors on nasal spray droplet velocity using phase-Doppler anemometry, AAPS Pharmscitech
Longest, Vinchurkar, Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence, Journal of biomechanics
Matheson, Lehner, How does SARS-CoV-2 cause COVID-19?, Science
Mittal, Ni, Seo, The flow physics of COVID-19, Journal of Fluid Mechanics
Pachetti, Marini, Benedetti, Giudici, Mauro et al., Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant, Journal of Translational Medicine
Perkins, Basu, Garcia, Buckmire, Shah et al., Ideal particle sizes for inhaled steroids targeting vocal granulomas: preliminary study using computational fluid dynamics, Otolaryngology-Head and Neck Surgery
Pharma, Valos VP7 Spray Pump. White Paper link
Shah, Dickens, Ward, Banaszek, George et al., Design of experiments to optimize an in vitro cast to predict human nasal drug deposition, Journal of Aerosol Medicine and Pulmonary Drug Delivery
Stremler, Basu, On point vortex models of exotic bluff body wakes, Fluid Dynamics Research
Suman, How evolving patient needs have fuelled the development of nasal drug delivery
Sungnak, Huang, Bécavin, Berg, Queen et al., SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes, Nature Medicine
Treat, Ebert, Farzal, Basu, Zanation et al., Intranasal corticosteroids: patient administration angles and impact of education, Rhinology Online
Zhang, Shang, Inthavong, Tong, Sun et al., Computational investigation of dust mite allergens in a realistic human nasal cavity, Inhalation Toxicology
{ 'institution': [{'name': 'medRxiv'}],
'indexed': {'date-parts': [[2023, 6, 5]], 'date-time': '2023-06-05T09:20:53Z', 'timestamp': 1685956853797},
'posted': {'date-parts': [[2022, 1, 28]]},
'group-title': 'Respiratory Medicine',
'reference-count': 45,
'publisher': 'Cold Spring Harbor Laboratory',
'content-domain': {'domain': [], 'crossmark-restriction': False},
'accepted': {'date-parts': [[2022, 1, 28]]},
'abstract': '<jats:title>Abstract</jats:title><jats:p>Drug delivery for viral respiratory infections, such '
'as SARS-CoV-2, can be enhanced significantly by targeting the nasopharynx, which is the '
'dominant initial infection site in the upper airway, for example by nasal sprays. However, '
'under the standard recommended spray usage protocol (“Current Use”, or CU), the nozzle enters '
'the nose almost vertically, resulting in sub-optimal deposition of drug droplets at the '
'nasopharynx. Using computational fluid dynamics simulations in two anatomic nasal geometries, '
'along with experimental validation of the generic findings in a different third subject, we '
'have identified a new “Improved Use” (or, IU) spray protocol. It entails pointing the spray '
'bottle at a shallower angle (almost horizontally), aiming slightly toward the cheeks. We have '
'simulated the performance of this protocol for conically injected spray droplet sizes of 1 – '
'24 <jats:italic>μ</jats:italic>m, at two breathing rates: 15 and 30 L/min. The lower flowrate '
'corresponds to resting breathing and follows a viscous-laminar model; the higher rate, '
'standing in for moderate breathing conditions, is turbulent and is tracked via Large Eddy '
'Simulation. The results show that (a) droplets sized between ∼ 6 – 14 '
'<jats:italic>μ</jats:italic>m are most efficient at direct landing over the nasopharyngeal '
'viral infection hot-spot; and (b) targeted drug delivery via IU outperforms CU by '
'approximately 2 orders-of-magnitude, under the two tested inhalation conditions. Also quite '
'importantly, the improved delivery strategy, facilitated by the IU protocol, is found to be '
'robust to small perturbations in spray direction, underlining the practical utility of this '
'simple change in nasal spray administration protocol.</jats:p>',
'DOI': '10.1101/2022.01.26.22269854',
'type': 'posted-content',
'created': {'date-parts': [[2022, 1, 29]], 'date-time': '2022-01-29T07:25:14Z', 'timestamp': 1643441114000},
'source': 'Crossref',
'is-referenced-by-count': 1,
'title': 'A model-based approach to improve intranasal sprays for respiratory viral infections',
'prefix': '10.1101',
'author': [ { 'ORCID': 'http://orcid.org/0000-0003-1464-8425',
'authenticated-orcid': False,
'given': 'Saikat',
'family': 'Basu',
'sequence': 'first',
'affiliation': []},
{ 'given': 'Mohammad Mehedi Hasan',
'family': 'Akash',
'sequence': 'additional',
'affiliation': []},
{'given': 'Yueying', 'family': 'Lao', 'sequence': 'additional', 'affiliation': []},
{'given': 'Pallavi A', 'family': 'Balivada', 'sequence': 'additional', 'affiliation': []},
{'given': 'Phoebe', 'family': 'Ato', 'sequence': 'additional', 'affiliation': []},
{'given': 'Nogaye K', 'family': 'Ka', 'sequence': 'additional', 'affiliation': []},
{'given': 'Austin', 'family': 'Mituniewicz', 'sequence': 'additional', 'affiliation': []},
{'given': 'Zachary', 'family': 'Silfen', 'sequence': 'additional', 'affiliation': []},
{'given': 'Julie', 'family': 'Suman', 'sequence': 'additional', 'affiliation': []},
{'given': 'Arijit', 'family': 'Chakravarty', 'sequence': 'additional', 'affiliation': []},
{'given': 'Diane', 'family': 'Joseph-McCarthy', 'sequence': 'additional', 'affiliation': []}],
'member': '246',
'reference': [ { 'key': '2022020102301972000_2022.01.26.22269854v1.1',
'unstructured': 'Johns-Hopkins-University. Coronavirus Resource Center. Web link, '
'accessed 15-January-2022.'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.2',
'doi-asserted-by': 'crossref',
'unstructured': 'R. Mittal , R. Ni , and J. H. Seo . The flow physics of COVID-19. '
'Journal of Fluid Mechanics, 894, 2020.',
'DOI': '10.1017/jfm.2020.330'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.3',
'doi-asserted-by': 'crossref',
'unstructured': 'Y. J. Hou , K. Okuda , C. E. Edwards , D. R. Martinez , T. Asakura , K. '
'H. Dinnon Iii , T. Kato , R. E. Lee , B. L. Yount , T. M. Mascenik , et '
'al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in '
'the Respiratory Tract. Cell, 2020.',
'DOI': '10.1016/j.cell.2020.05.042'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.4',
'doi-asserted-by': 'publisher',
'DOI': '10.1126/science.abc6156'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.5',
'first-page': '1',
'article-title': 'Computational characterization of inhaled droplet transport to the '
'nasopharynx',
'volume': '11',
'year': '2021',
'journal-title': 'Scientific Reports'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.6',
'doi-asserted-by': 'publisher',
'DOI': '10.7326/M20-3012'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.7',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41591-020-0868-6'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.8',
'doi-asserted-by': 'crossref',
'unstructured': 'S. Basu , N. S. Hochberg , B. A. Senior , D. Joseph-McCarthy , and A. '
'Chakravarty . From SARS-CoV-2 infection to COVID-19 disease: a proposed '
'mechanism for viral spread to the lower airway based on in silico '
'estimation of virion flow rates. medRxiv, 2020.',
'DOI': '10.1101/2020.12.19.20248544'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.9',
'doi-asserted-by': 'crossref',
'unstructured': 'S. Basu , M. M. H. Akash , N. S. Hochberg , B. A. Senior , D. '
'Joseph-McCarthy , and A. Chakravarty . From SARS-CoV-2 infection to '
'COVID-19 morbidity: an in silico projection of virion flow rates to the '
'lower airway via nasopharyngeal fluid boluses. Rhinology Online, 2022.',
'DOI': '10.4193/RHINOL/21.053'},
{ 'issue': '1',
'key': '2022020102301972000_2022.01.26.22269854v1.10',
'first-page': '1',
'article-title': 'Emerging SARS-CoV-2 mutation hot spots include a novel '
'RNA-dependent-RNA polymerase variant',
'volume': '18',
'year': '2020',
'journal-title': 'Journal of Translational Medicine'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.11',
'doi-asserted-by': 'publisher',
'DOI': '10.1080/08958370802320186'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.12',
'unstructured': 'M. M. H. Akash , A. Mituniewicz , Y. Lao , P. Balivada , P. Ato , N. Ka '
', Z. Silfen , A. Chakravarty , D. Joseph-McCarthy , and S. Basu . A '
'better way to spray?–a model-based optimization of nasal spray use '
'protocols. Bulletin of the American Physical Society, 2021.'},
{ 'issue': '1',
'key': '2022020102301972000_2022.01.26.22269854v1.13',
'doi-asserted-by': 'crossref',
'first-page': '46',
'DOI': '10.1089/jamp.2014.1188',
'article-title': 'Influence of mesh density on airflow and particle deposition in '
'sinonasal airway modeling',
'volume': '29',
'year': '2016',
'journal-title': 'Journal of Aerosol Medicine and Pulmonary Drug Delivery'},
{ 'issue': '3',
'key': '2022020102301972000_2022.01.26.22269854v1.14',
'first-page': 'A',
'article-title': 'Influence of localized mesh refinement on numerical simulations of '
'post-surgical sinonasal airflow',
'volume': '30',
'year': '2017',
'journal-title': 'Journal of Aerosol Medicine and Pulmonary Drug Delivery'},
{ 'issue': '1',
'key': '2022020102301972000_2022.01.26.22269854v1.15',
'first-page': '1',
'article-title': 'Numerical evaluation of spray position for improved nasal drug delivery',
'volume': '10',
'year': '2020',
'journal-title': 'Scientific Reports'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.16',
'doi-asserted-by': 'crossref',
'first-page': '97',
'DOI': '10.1016/j.clinbiomech.2017.10.006',
'article-title': 'Geometry and airflow dynamics analysis in the nasal cavity during '
'inhalation',
'volume': '66',
'year': '2019',
'journal-title': 'Clinical Biomechanics'},
{ 'issue': '6',
'key': '2022020102301972000_2022.01.26.22269854v1.17',
'doi-asserted-by': 'crossref',
'first-page': '224',
'DOI': '10.1080/08958378.2019.1647315',
'article-title': 'Computational investigation of dust mite allergens in a realistic human '
'nasal cavity',
'volume': '31',
'year': '2019',
'journal-title': 'Inhalation Toxicology'},
{ 'issue': '4',
'key': '2022020102301972000_2022.01.26.22269854v1.18',
'doi-asserted-by': 'crossref',
'first-page': 'e2946',
'DOI': '10.1002/cnm.2946',
'article-title': 'On computational fluid dynamics models for sinonasal drug transport: '
'Relevance of nozzle subtraction and nasal vestibular dilation',
'volume': '34',
'year': '2018',
'journal-title': 'International Journal for Numerical Methods in Biomedical Engineering'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.19',
'first-page': '746',
'volume-title': 'In International Forum of Allergy & Rhinology',
'volume': '9',
'year': '2019'},
{ 'issue': '2',
'key': '2022020102301972000_2022.01.26.22269854v1.20',
'doi-asserted-by': 'crossref',
'first-page': '150',
'DOI': '10.1002/lsm.23005',
'article-title': 'Upper airway reconstruction using long-range optical coherence '
'tomography: Effects of airway curvature on airflow resistance',
'volume': '51',
'year': '2019',
'journal-title': 'Lasers in Surgery and Medicine'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.21',
'doi-asserted-by': 'crossref',
'first-page': '72',
'DOI': '10.1017/jfm.2017.563',
'article-title': 'Exploring the dynamics of ‘2P’ wakes with reflective symmetry using '
'point vortices',
'volume': '831',
'year': '2017',
'journal-title': 'Journal of Fluid Mechanics'},
{ 'issue': '10',
'key': '2022020102301972000_2022.01.26.22269854v1.22',
'doi-asserted-by': 'crossref',
'first-page': '103603',
'DOI': '10.1063/1.4932534',
'article-title': 'On the motion of two point vortex pairs with glide-reflective symmetry '
'in a periodic strip',
'volume': '27',
'year': '2015',
'journal-title': 'Physics of Fluids'},
{ 'issue': '6',
'key': '2022020102301972000_2022.01.26.22269854v1.23',
'doi-asserted-by': 'crossref',
'first-page': '061410',
'DOI': '10.1088/0169-5983/46/6/061410',
'article-title': 'On point vortex models of exotic bluff body wakes',
'volume': '46',
'year': '2014',
'journal-title': 'Fluid Dynamics Research'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.24',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.jbiomech.2006.01.006'},
{ 'issue': '3',
'key': '2022020102301972000_2022.01.26.22269854v1.25',
'doi-asserted-by': 'crossref',
'first-page': '511',
'DOI': '10.1177/0194599817742126',
'article-title': 'Ideal particle sizes for inhaled steroids targeting vocal granulomas: '
'preliminary study using computational fluid dynamics',
'volume': '158',
'year': '2018',
'journal-title': 'Otolaryngology–Head and Neck Surgery'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.26',
'doi-asserted-by': 'crossref',
'unstructured': 'S. Hosseini , T. A. Schuman , R. Walenga , J. V. Wilkins Jr , A. '
'Babiskin , and L. Golshahi . Use of anatomically-accurate 3-dimensional '
'nasal airway models of adult human subjects in a novel methodology to '
'identify and evaluate the internal nasal valve. Computers in Biology and '
'Medicine, page 103896, 2020.',
'DOI': '10.1016/j.compbiomed.2020.103896'},
{ 'issue': '1-3',
'key': '2022020102301972000_2022.01.26.22269854v1.27',
'doi-asserted-by': 'crossref',
'first-page': '100',
'DOI': '10.1016/j.resp.2008.07.027',
'article-title': 'Mechanics of airflow in the human nasal airways',
'volume': '163',
'year': '2008',
'journal-title': 'Respiratory Physiology & Neurobiology'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.28',
'doi-asserted-by': 'crossref',
'unstructured': 'N. Baghernezhad and O. Abouali . Different SGS models in Large Eddy '
'Simulation of 90 degree square cross-section bends. Journal of '
'Turbulence, (11):N50, 2010.',
'DOI': '10.1080/14685248.2010.520016'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.29',
'unstructured': 'Aptar Pharma . Valos VP7 Spray Pump. White Paper link, accessed '
'18-January-2022.'},
{ 'issue': '1',
'key': '2022020102301972000_2022.01.26.22269854v1.30',
'doi-asserted-by': 'crossref',
'first-page': '337',
'DOI': '10.1208/s12249-011-9594-1',
'article-title': 'Assessment of the influence factors on nasal spray droplet velocity '
'using phase-Doppler anemometry',
'volume': '12',
'year': '2011',
'journal-title': 'AAPS Pharmscitech'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.31',
'unstructured': 'S. Basu , Z. Farzal , and J. S. Kimbell . “Magical” fluid pathways: '
'inspired airflow corridors for optimal drug delivery to human sinuses. '
'In APS Division of Fluid Dynamics Meeting Abstracts, pages L4–004, '
'2017.'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.32',
'doi-asserted-by': 'crossref',
'unstructured': 'W. H. Finlay . The Mechanics of Inhaled Pharmaceutical Aerosols: An '
'Introduction. Academic Press, 2001.',
'DOI': '10.1016/B978-012256971-5/50002-X'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.33',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.otohns.2003.10.007'},
{ 'issue': '8',
'key': '2022020102301972000_2022.01.26.22269854v1.34',
'doi-asserted-by': 'crossref',
'first-page': '1895',
'DOI': '10.1007/s11095-011-0417-6',
'article-title': 'Effect of formulation-and administration-related variables on '
'deposition pattern of nasal spray pumps evaluated using a nasal cast',
'volume': '28',
'year': '2011',
'journal-title': 'Pharmaceutical Research'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.35',
'unstructured': 'Fluticasone propionate nasal spray instructions. '
'http://dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm?archiveid=5767. '
'accessed 21-September-2013.'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.36',
'first-page': '181',
'article-title': 'Characterizing nasal delivery in 3D models before and after sinus '
'surgery',
'volume': '1',
'year': '2018',
'journal-title': 'Respiratory Drug Delivery'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.37',
'doi-asserted-by': 'crossref',
'unstructured': 'S. Treat , C. S. Ebert Jr , Z. Farzal , S. Basu , A. M. Zanation , B. D. '
'Thorp , J. S. Kimbell , B. A. Senior , and A. J. Kimple . Intranasal '
'corticosteroids: patient administration angles and impact of education. '
'Rhinology Online, 2020.',
'DOI': '10.4193/RHINOL/20.070'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.38',
'doi-asserted-by': 'publisher',
'DOI': '10.1089/08942680152484199'},
{ 'issue': '9',
'key': '2022020102301972000_2022.01.26.22269854v1.39',
'doi-asserted-by': 'crossref',
'first-page': '801',
'DOI': '10.1016/j.ijmultiphaseflow.2009.02.013',
'article-title': 'A scaling analysis for point–particle approaches to turbulent '
'multiphase flows',
'volume': '35',
'year': '2009',
'journal-title': 'International Journal of Multiphase Flow'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.40',
'unstructured': 'J. Suman . How evolving patient needs have fuelled the development of '
'nasal drug delivery, 2021.'},
{ 'issue': '1',
'key': '2022020102301972000_2022.01.26.22269854v1.41',
'doi-asserted-by': 'crossref',
'first-page': '21',
'DOI': '10.1089/jamp.2012.1011',
'article-title': 'Design of experiments to optimize an in vitro cast to predict human '
'nasal drug deposition',
'volume': '27',
'year': '2014',
'journal-title': 'Journal of Aerosol Medicine and Pulmonary Drug Delivery'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.42',
'doi-asserted-by': 'crossref',
'unstructured': 'A. G. Ford , X. Z. Cao , M. J. Papanikolas , T. Kato , R. C. Boucher , '
'M. R. Markovetz , D. B. Hill , R. Freeman , and M. G. Forest . Molecular '
'dynamics simulations to explore the structure and rheological properties '
'of normal and hyperconcentrated airway mucus. Studies in Applied '
'Mathematics, 2021.',
'DOI': '10.1111/sapm.12433'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.43',
'doi-asserted-by': 'crossref',
'unstructured': 'S. Basu , U. A. Khawaja , S. A. A. Rizvi , B. Gong , W. Yeung , M. A. '
'Sanchez-Gonzalez , and G. Ferrer . Evaluation of patient experience for '
'a computationally-guided intranasal spray protocol to augment '
'therapeutic penetration. medRxiv, 2021.',
'DOI': '10.1101/2021.08.31.21262495'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.44',
'unstructured': 'ISO. Biological evaluation of medical devices – Part 1: Evaluation and '
'testing within a risk management process. ISO 10993-1: 2009, 2009.'},
{ 'key': '2022020102301972000_2022.01.26.22269854v1.45',
'unstructured': 'Use of International Standard ISO 10993-1, “Biological evaluation of '
'medical devices – Part 1: Evaluation and testing within a risk '
'management proces” – Guidance for Industry and Food and Drug '
'Administration Staff. https://www.fda.gov/media/85865/download. accessed '
'23-January-2022.'}],
'container-title': [],
'original-title': [],
'link': [ { 'URL': 'https://syndication.highwire.org/content/doi/10.1101/2022.01.26.22269854',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2022, 2, 1]],
'date-time': '2022-02-01T10:31:04Z',
'timestamp': 1643711464000},
'score': 1,
'resource': {'primary': {'URL': 'http://medrxiv.org/lookup/doi/10.1101/2022.01.26.22269854'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2022, 1, 28]]},
'references-count': 45,
'URL': 'http://dx.doi.org/10.1101/2022.01.26.22269854',
'relation': {},
'subject': [],
'published': {'date-parts': [[2022, 1, 28]]},
'subtype': 'preprint'}