Quercetin for COVID-19: real-time meta analysis of 11 studies
@CovidAnalysis, November 2023
https://c19early.org/qmeta.html

- Statistically significant lower risk is seen for ICU admission, hospitalization, recovery, cases, and viral clearance. 10 studies from 8 independent teams in 7 countries show statistically significant improvements.

- Meta analysis using the most serious outcome reported shows 49% [21-68%] lower risk. Results are similar for Randomized Controlled Trials and higher quality studies, better after excluding studies using combined treatment, and slightly worse for peer-reviewed studies.

- Results are robust — in exclusion sensitivity analysis 8 of 11 studies must be excluded to avoid finding statistically significant efficacy in pooled analysis.

- Studies typically use advanced formulations for greatly improved bioavailability.

- No treatment or intervention is 100% effective. All practical, effective, and safe means should be used based on risk/benefit analysis. Multiple treatments are typically used in combination, and other treatments may be more effective. The quality of non-prescription supplements can vary widely.

- All data to reproduce this paper and sources are in the appendix. Other meta analyses show significant improvements with quercetin for mortality, ICU admission, and hospitalization.
Quercetin reduces risk for COVID-19 with very high confidence for ICU admission, hospitalization, recovery, cases, viral clearance, and in pooled analysis, and very low confidence for mortality and ventilation. Studies typically use advanced formulations for greatly improved bioavailability.

We show traditional outcome specific analyses and combined evidence from all studies, incorporating treatment delay, a primary confounding factor in COVID-19 studies.

Real-time updates and corrections, transparent analysis with all results in the same format, consistent protocol for 57 treatments.

HIGHLIGHTS
Quercetin reduces risk for COVID-19 with very high confidence for ICU admission, hospitalization, recovery, cases, viral clearance, and in pooled analysis, and very low confidence for mortality and ventilation. Studies typically use advanced formulations for greatly improved bioavailability.

11 quercetin COVID-19 studies

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>0/76</td>
</tr>
<tr>
<td>No recov.</td>
<td>10/25</td>
</tr>
<tr>
<td>Death</td>
<td>0/50</td>
</tr>
<tr>
<td>No recov.</td>
<td>15/25</td>
</tr>
</tbody>
</table>

Early treatment

<table>
<thead>
<tr>
<th>Improvement, RR (CI)</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>86%</td>
<td>0.14 [0.01-2.72]</td>
<td>death 0/76, 3/76</td>
</tr>
<tr>
<td>33%</td>
<td>0.67 [0.37-1.19]</td>
<td>no recov. 10/25, 15/25</td>
</tr>
<tr>
<td>67%</td>
<td>0.33 [0.01-7.99]</td>
<td>death 0/50, 1/50</td>
</tr>
<tr>
<td>29%</td>
<td>0.71 [0.50-1.03]</td>
<td>no recov. 15/25, 21/25</td>
</tr>
</tbody>
</table>

Late treatment

<table>
<thead>
<tr>
<th>Improvement, RR (CI)</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>-29%</td>
<td>1.29 [0.16-10.5]</td>
<td>death 1/49, 6/380</td>
</tr>
<tr>
<td>29%</td>
<td>0.71 [0.32-1.58]</td>
<td>no recov. 9/99, 13/101</td>
</tr>
<tr>
<td>86%</td>
<td>0.14 [0.01-2.65]</td>
<td>death 0/30, 3/30</td>
</tr>
<tr>
<td>67%</td>
<td>0.33 [0.01-7.70]</td>
<td>death 0/25, 1/24</td>
</tr>
</tbody>
</table>

Prophylaxis

<table>
<thead>
<tr>
<th>Improvement, RR (CI)</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>92%</td>
<td>0.08 [0.01-0.79]</td>
<td>cases 1/71, 9/42</td>
</tr>
<tr>
<td>94%</td>
<td>0.06 [0.00-0.93]</td>
<td>cases 0/53, 9/60</td>
</tr>
<tr>
<td>93%</td>
<td>0.07 [0.01-0.91]</td>
<td>symp. case 1/60, 4/60</td>
</tr>
</tbody>
</table>

All studies

<table>
<thead>
<tr>
<th>Improvement, RR (CI)</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>49%</td>
<td>0.51 [0.32-0.79]</td>
<td>cases 37/563, 85/873</td>
</tr>
</tbody>
</table>

Efficacy in COVID-19 quercetin studies (pooled effects)

- **Prophylaxis**: 93% lower risk
- **Early treatment**: 32% lower risk
- **Late treatment**: 24% lower risk
- **All studies**: 49% lower risk

Effect extraction pre-specified

- Most serious outcome, see appendix
- Favorable effect: Favors quercetin
- Not favorable effect: Favors control

November 2023

Favors quercetin

Favors control

November 2023
Figure 1. A. Random effects meta-analysis. This plot shows pooled effects, see the specific outcome analyses for individual outcomes, and the heterogeneity section for discussion. Effect extraction is pre-specified, using the most serious outcome reported. For details of effect extraction see the appendix. B. Scatter plot showing the most serious outcome in all studies, and for studies within each stage. Diamonds shows results of random effects meta-analysis. C. Results within the context of multiple COVID-19 treatments. 0.7% of 5,730 proposed treatments show efficacy. D. Timeline of results in quercetin studies. The marked dates indicate the time when efficacy was known with a statistically significant improvement of ≥10% from ≥3 studies for pooled outcomes, one or more specific outcome, pooled outcomes in RCTs, and one or more specific outcome in RCTs. Efficacy based on RCTs only was delayed by 6.0 months, compared to using all studies. Efficacy based on specific outcomes was delayed by 6.0 months, compared to using pooled outcomes. Efficacy based on specific outcomes in RCTs was delayed by 17.5 months, compared to using pooled outcomes in RCTs.
Introduction

We analyze all significant studies concerning the use of quercetin for COVID-19. Search methods, inclusion criteria, effect extraction criteria (more serious outcomes have priority), all individual study data, PRISMA answers, and statistical methods are detailed in Appendix 1. We present random effects meta-analysis results for all studies, studies within each treatment stage, individual outcomes, peer-reviewed studies, Randomized Controlled Trials (RCTs), and after exclusions.

Figure 2 shows stages of possible treatment for COVID-19. Prophylaxis refers to regularly taking medication before becoming sick, in order to prevent or minimize infection. Early Treatment refers to treatment immediately or soon after symptoms appear, while Late Treatment refers to more delayed treatment.

Preclinical Research

16 In Silico studies support the efficacy of quercetin \(^\text{Nakl, Azmi, Chellasamy, Corbo, Ibeh, Kandell, Mandal, Moschovou, Nguyen, Pan, Sai Ramesh, Sekou, Thapa, Wang, Yang, Şimşek,}\

8 In Vitro studies support the efficacy of quercetin \(^\text{Aguado, Bahun, Goc, Kandell, Munafò, Pan, Singh, Xu,}\

2 In Vivo animal studies support the efficacy of quercetin \(^\text{Aguado, Wu,}\

Preclinical research is an important part of the development of treatments, however results may be very different in clinical trials. Preclinical results are not used in this paper.

Results

Table 1 summarizes the results for all stages combined, with different exclusions, and for specific outcomes. Table 2 shows results by treatment stage. Figure 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 show forest plots for random effects meta-analysis of all studies with pooled effects, mortality results, ventilation, ICU admission, hospitalization, recovery, cases, viral clearance, peer reviewed studies, and all studies excluding combined treatment studies.
<table>
<thead>
<tr>
<th>Improvement</th>
<th>Studies</th>
<th>Patients</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>All studies</td>
<td>49% [21-68%]</td>
<td>11</td>
<td>1,436</td>
</tr>
<tr>
<td>After exclusions</td>
<td>41% [12-60%]</td>
<td>9</td>
<td>1,223</td>
</tr>
<tr>
<td>Peer-reviewed studies</td>
<td>39% [14-57%]</td>
<td>10</td>
<td>1,323</td>
</tr>
<tr>
<td>Excluding combined treatment</td>
<td>68% [12-89%]</td>
<td>5</td>
<td>632</td>
</tr>
<tr>
<td>Randomized Controlled Trials</td>
<td>43% [16-62%]</td>
<td>10</td>
<td>1,323</td>
</tr>
</tbody>
</table>

Table 1. Random effects meta-analysis for all stages combined, with different exclusions, and for specific outcomes. Results show the percentage improvement with treatment and the 95% confidence interval. **p<0.01 ***p<0.001 ****p<0.0001.

<table>
<thead>
<tr>
<th>Early treatment</th>
<th>Late treatment</th>
<th>Prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>All studies</td>
<td>32% [7-50%] *</td>
<td>34% [35-67%]</td>
</tr>
<tr>
<td>After exclusions</td>
<td>31% [7-49%] *</td>
<td>34% [35-67%]</td>
</tr>
<tr>
<td>Peer-reviewed studies</td>
<td>32% [7-50%] *</td>
<td>34% [35-67%]</td>
</tr>
<tr>
<td>Excluding combined treatment</td>
<td>79% [-83-98%]</td>
<td>40% [-53-76%]</td>
</tr>
<tr>
<td>Randomized Controlled Trials</td>
<td>32% [7-50%] *</td>
<td>34% [35-67%]</td>
</tr>
</tbody>
</table>

Table 2. Random effects meta-analysis results by treatment stage. Results show the percentage improvement with treatment, the 95% confidence interval, and the number of studies for the stage. *p<0.05 **p<0.01 ***p<0.001 ****p<0.0001.
Figure 3. Random effects meta-analysis for all studies with pooled effects. This plot shows pooled effects, see the specific outcome analyses for individual outcomes, and the heterogeneity section for discussion. Effect extraction is pre-specified, using the most serious outcome reported. For details of effect extraction see the appendix.

Figure 4. Random effects meta-analysis for mortality results.
Figure 5. Random effects meta-analysis for ventilation.

Figure 6. Random effects meta-analysis for ICU admission.

Figure 7. Random effects meta-analysis for hospitalization.
7 quercetin COVID-19 recovery results

Figure 8. Random effects meta-analysis for recovery.

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khan (RCT)</td>
<td>33%</td>
<td>67%</td>
</tr>
<tr>
<td>Di Pierro (RCT)</td>
<td>37%</td>
<td>64%</td>
</tr>
<tr>
<td>Din Ujjan (RCT)</td>
<td>29%</td>
<td>71%</td>
</tr>
<tr>
<td>Early treatment</td>
<td>33%</td>
<td>67%</td>
</tr>
<tr>
<td>Khan (RCT)</td>
<td>33% [0.53-0.84]</td>
<td>33% lower risk</td>
</tr>
<tr>
<td>Di Pierro (RCT)</td>
<td>37% [0.46-0.68]</td>
<td>37% lower risk</td>
</tr>
<tr>
<td>Din Ujjan (RCT)</td>
<td>29% [0.95-0.13]</td>
<td>34% lower risk</td>
</tr>
</tbody>
</table>

Figure 9. Random effects meta-analysis for cases.

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khan (RCT)</td>
<td>50%</td>
<td>67%</td>
</tr>
<tr>
<td>Di Pierro (RCT)</td>
<td>58%</td>
<td>72%</td>
</tr>
<tr>
<td>Din Ujjan (RCT)</td>
<td>91%</td>
<td>91%</td>
</tr>
<tr>
<td>Prophylaxis</td>
<td>93%</td>
<td>93%</td>
</tr>
<tr>
<td>All studies</td>
<td>93%</td>
<td>93%</td>
</tr>
</tbody>
</table>

Figure 10. Random effects meta-analysis for viral clearance.

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khan (RCT)</td>
<td>50% [0.30-0.84]</td>
<td>56% lower risk</td>
</tr>
<tr>
<td>Di Pierro (RCT)</td>
<td>58% [0.27-0.66]</td>
<td>56% lower risk</td>
</tr>
<tr>
<td>Din Ujjan (RCT)</td>
<td>91% [0.09-0.21]</td>
<td>56% lower risk</td>
</tr>
<tr>
<td>Early treatment</td>
<td>56% [0.32-0.62]</td>
<td>56% lower risk</td>
</tr>
<tr>
<td>All studies</td>
<td>56%</td>
<td>56%</td>
</tr>
</tbody>
</table>
Figure 11. Random effects meta-analysis for peer reviewed studies. Zeraatkar analyze 356 COVID-19 trials, finding no significant evidence that preprint results are inconsistent with peer-reviewed studies. They also show extremely long peer-review delays, with a median of 6 months to journal publication. A six month delay was equivalent to around 1.5 million deaths during the first two years of the pandemic. Authors recommend using preprint evidence, with appropriate checks for potential falsified data, which provides higher certainty much earlier. Effect extraction is pre-specified, using the most serious outcome reported, see the appendix for details.

Figure 12. Random effects meta-analysis for all studies excluding combined treatment studies. Effect extraction is pre-specified, using the most serious outcome reported, see the appendix for details.
Randomized Controlled Trials (RCTs)

Figure 13 shows a comparison of results for RCTs and non-RCT studies. Figure 14, 15, and 16 show forest plots for random effects meta-analysis of all Randomized Controlled Trials, RCT mortality results, and RCT hospitalization results. RCT results are included in Table 1 and Table 2.

RCTs have many potential biases. Bias in clinical research may be defined as something that tends to make conclusions differ systematically from the truth. RCTs help to make study groups more similar and can provide a higher level of evidence, however they are subject to many biases. For COVID-19, the overhead may delay treatment, dramatically compromising efficacy; they may encourage monotherapy for simplicity at the cost of efficacy which may rely on combined or synergistic effects; the participants that sign up may not reflect real world usage or the population that benefits most in terms of age, comorbidities, severity of illness, or other factors; standard of care may be compromised and unable to evolve quickly based on emerging research for new diseases; errors may be made in randomization and medication delivery; and investigators may have hidden agendas or vested interests influencing design, operation, analysis, and the potential for fraud. All of these biases have been observed with COVID-19 RCTs. There is no guarantee that a specific RCT provides a higher level of evidence.

RCTs for novel acute diseases requiring rapid treatment. High quality RCTs for novel acute diseases are more challenging, with increased ethical issues due to the urgency of treatment, increased risk due to enrollment delays, and more difficult design with a rapidly evolving evidence base. For COVID-19, the most common site of initial infection is the upper respiratory tract. Immediate treatment is likely to be most successful and may prevent or slow progression to other parts of the body. For a non-prophylaxis RCT, it makes sense to provide treatment in advance and instruct patients to use it immediately on symptoms, just as some governments have done by providing medication kits in advance. Unfortunately, no RCTs have been done in this way. Every treatment RCT to date involves delayed treatment. Among the 57 treatments we have analyzed, 64% of RCTs involve very late treatment 5+ days after onset. No non-prophylaxis COVID-19 RCTs match the potential real-world use of early treatments (they may more accurately represent results for treatments that require visiting a medical facility, e.g., those requiring intravenous administration).

RCT bias for widely available treatments. RCTs have a bias against finding an effect for interventions that are widely available — patients that believe they need the intervention are more likely to decline participation and take the intervention. RCTs for quercetin are more likely to enroll low-risk participants that do not need treatment to recover, making the results less applicable to clinical practice. This bias is likely to be greater for widely known treatments, and may be greater when the risk of a serious outcome is overstated. This bias does not apply to the typical pharmaceutical trial of a new drug that is otherwise unavailable.

Non-RCT studies have been shown to be reliable. Evidence shows that non-RCT trials can also provide reliable results. Concato find that well-designed observational studies do not systematically overestimate the magnitude of the effects of treatment compared to RCTs. Anglemyer summarized reviews comparing RCTs to observational studies and found little evidence for significant differences in effect estimates. Lee shows that only 14% of the guidelines of the Infectious Diseases Society of America were based on RCTs. Evaluation of studies relies on an understanding of the study and potential biases. Limitations in an RCT can outweigh the benefits, for example excessive dosages, excessive treatment delays, or Internet survey bias could have a greater effect on results. Ethical issues may also prevent running RCTs for known effective treatments. For more on issues with RCTs see Deaton, Nichol.

Using all studies identifies efficacy 5.7+ months faster for COVID-19. Currently, 39 of the treatments we analyze show statistically significant efficacy or harm, defined as ≥10% decreased risk or >0% increased risk from ≥3 studies. Of the 39 treatments with statistically significant efficacy/harm, 24 have been confirmed in RCTs, with a mean delay of 5.7 months. For the 15 unconfirmed treatments, 4 have zero RCTs to date. The point estimates for the remaining 11 are all consistent with the overall results (benefit or harm), with 9 showing >20%. The only treatments showing >10% efficacy for all studies, but <10% for RCTs are sotrovimab and aspirin.

Summary. We need to evaluate each trial on its own merits. RCTs for a given medication and disease may be more reliable, however they may also be less reliable. For off-patent medications, very high conflict of interest trials may be more likely to be RCTs, and more likely to be large trials that dominate meta analyses.
Figure 13. Results for RCTs and non-RCT studies.

Figure 14. Random effects meta-analysis for all Randomized Controlled Trials. This plot shows pooled effects, see the specific outcome analyses for individual outcomes, and the heterogeneity section for discussion. Effect extraction is pre-specified, using the most serious outcome reported. For details of effect extraction see the appendix.
Exclusions

To avoid bias in the selection of studies, we analyze all non-retracted studies. Here we show the results after excluding studies with major issues likely to alter results, non-standard studies, and studies where very minimal detail is currently available. Our bias evaluation is based on analysis of each study and identifying when there is a significant chance that limitations will substantially change the outcome of the study. We believe this can be more valuable than checklist-based approaches such as Cochrane GRADE, which may underemphasize serious issues not captured in the checklists, overemphasize issues unlikely to alter outcomes in specific cases (for example, lack of blinding for an objective mortality outcome, or certain specifics of randomization with a very large effect size), or be easily influenced by potential bias. However, they can also be very high quality.

The studies excluded are as below. Figure 17 shows a forest plot for random effects meta-analysis of all studies after exclusions.

Arslan, paper no longer available at the source, and the contact does not reply to queries.
Di Pierro, randomization resulted in significant baseline differences that were not adjusted for.

Figure 17. Random effects meta-analysis for all studies after exclusions. This plot shows pooled effects, see the specific outcome analyses for individual outcomes, and the heterogeneity section for discussion. Effect extraction is pre-specified, using the most serious outcome reported. For details of effect extraction see the appendix.

Heterogeneity

Heterogeneity in COVID-19 studies arises from many factors including:

- **Treatment delay.** The time between infection or the onset of symptoms and treatment may critically affect how well a treatment works. For example an antiviral may be very effective when used early but may not be effective in late stage disease, and may even be harmful. Oseltamivir, for example, is generally only considered effective for influenza when used within 0-36 or 0-48 hours. McLean, Treanor, Baloxavir studies for influenza also show that treatment delay is critical. Ikematsu report an 86% reduction in cases for post-exposure prophylaxis, Hayden show a 33 hour reduction in the time to alleviation of symptoms for treatment within 24 hours and a reduction of 13 hours for treatment within 24-48 hours, and Kumar report only 2.5 hours improvement for inpatient treatment.
<table>
<thead>
<tr>
<th>Treatment delay</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post exposure prophylaxis</td>
<td>86% fewer cases</td>
</tr>
<tr>
<td><24 hours</td>
<td>-33 hours symptoms</td>
</tr>
<tr>
<td>24-48 hours</td>
<td>-13 hours symptoms</td>
</tr>
<tr>
<td>Inpatients</td>
<td>-2.5 hours to improvement</td>
</tr>
</tbody>
</table>

Table 3. Studies of baloxavir for influenza show that early treatment is more effective.

Figure 18 shows a mixed-effects meta-regression for efficacy as a function of treatment delay in COVID-19 studies from 57 treatments, showing that efficacy declines rapidly with treatment delay. Early treatment is critical for COVID-19.

Patient demographics. Details of the patient population including age and comorbidities may critically affect how well a treatment works. For example, many COVID-19 studies with relatively young low-comorbidity patients show all patients recovering quickly with or without treatment. In such cases, there is little room for an effective treatment to improve results (as in López-Medina).

Effect measured. Efficacy may differ significantly depending on the effect measured, for example a treatment may be very effective at reducing mortality, but less effective at minimizing cases or hospitalization. Or a treatment may have no effect on viral clearance while still being effective at reducing mortality.

Variants. There are many different variants of SARS-CoV-2 and efficacy may depend critically on the distribution of variants encountered by the patients in a study. For example, the Gamma variant shows significantly different characteristics Faria, Karita, Nonaka, Zavascki. Different mechanisms of action may be more or less effective depending on variants, for example the viral entry process for the omicron variant has moved towards TMPRSS2-independent fusion, suggesting that TMPRSS2 inhibitors may be less effective Peacock, Willett.
Regimen. Effectiveness may depend strongly on the dosage and treatment regimen.

Other treatments. The use of other treatments may significantly affect outcomes, including anything from supplements, other medications, or other kinds of treatment such as prone positioning.

Medication quality. The quality of medications may vary significantly between manufacturers and production batches, which may significantly affect efficacy and safety. Williams analyze ivermectin from 11 different sources, showing highly variable antiparasitic efficacy across different manufacturers. Xu (B) analyze a treatment from two different manufacturers, showing 9 different impurities, with significantly different concentrations for each manufacturer. Non-prescription supplements may show very wide variations in quality Crawford, Crighton.

Pooled outcome analysis. We present both pooled analyses and specific outcome analyses. Notably, pooled analysis often results in earlier detection of efficacy as shown in Figure 19. For many COVID-19 treatments, a reduction in mortality logically follows from a reduction in hospitalization, which follows from a reduction in symptomatic cases, etc. An antiviral tested with a low-risk population may report zero mortality in both arms, however a reduction in severity and improved viral clearance may translate into lower mortality among a high-risk population, and including these results in pooled analysis allows faster detection of efficacy. Trials with high-risk patients may also be restricted due to ethical concerns for treatments that are known or expected to be effective.

Pooled analysis enables using more of the available information. While there is much more information available, for example dose-response relationships, the advantage of the method used here is simplicity and transparency. Note that pooled analysis could hide efficacy, for example a treatment that is beneficial for late stage patients but has no effect on viral replication or early stage disease could show no efficacy in pooled analysis if most studies only examine viral clearance. While we present pooled results, we also present individual outcome analyses, which may be more informative for specific use cases.

Pooled outcomes identify efficacy faster. Currently, 39 of the treatments we analyze show statistically significant efficacy or harm, defined as ≥10% decreased risk or >0% increased risk from ≥3 studies. 89% of treatments showing statistically significant efficacy/harm with pooled effects have been confirmed with one or more specific outcomes, with a mean delay of 3.4 months. When restricting to RCTs only, 52% of treatments showing statistically significant efficacy/harm with pooled effects have been confirmed with one or more specific outcomes, with a mean delay of 3.6 months.
Figure 19. The time when studies showed that treatments were effective, defined as statistically significant improvement of ≥10% from ≥3 studies. Pooled results typically show efficacy earlier than specific outcome results. Results from all studies often shows efficacy much earlier than when restricting to RCTs. Results reflect conditions as used in trials to date, these depend on the population treated, treatment delay, and treatment regimen.

Meta analysis. The distribution of studies will alter the outcome of a meta analysis. Consider a simplified example where everything is equal except for the treatment delay, and effectiveness decreases to zero or below with increasing delay. If there are many studies using very late treatment, the outcome may be negative, even though early treatment is very effective. This may have a greater effect than pooling different outcomes such as mortality and hospitalization. For example a treatment may have 50% efficacy for mortality but only 40% for hospitalization when used within 48 hours. However efficacy could be 0% when used late.

All meta analyses combine heterogeneous studies, varying in population, variants, and potentially all factors above, and therefore may obscure efficacy by including studies where treatment is less effective. Generally, we expect the estimated effect size from meta analysis to be less than that for the optimal case. Looking at all studies is valuable for providing an overview of all research, important to avoid cherry-picking, and informative when a positive result is found despite combining less-optimal situations. However, the resulting estimate does not apply to specific cases such as early treatment in high-risk populations. While we present results for all studies, we also present treatment time and individual outcome analyses, which may be more informative for specific use cases.

Discussion

Publication bias. Publishing is often biased towards positive results, however evidence suggests that there may be a negative bias for inexpensive treatments for COVID-19. Both negative and positive results are very important for COVID-19, media in many countries prioritizes negative results for inexpensive treatments (inverting the typical incentive for scientists that value media recognition), and there are many reports of difficulty publishing positive results. For quercetin, there is currently not enough data to evaluate publication bias with high confidence.
One method to evaluate bias is to compare prospective vs. retrospective studies. Prospective studies are more likely to be published regardless of the result, while retrospective studies are more likely to exhibit bias. For example, researchers may perform preliminary analysis with minimal effort and the results may influence their decision to continue. Retrospective studies also provide more opportunities for the specifics of data extraction and adjustments to influence results.

Figure 20 shows a scatter plot of results for prospective and retrospective studies. 100% of retrospective studies report a statistically significant positive effect for one or more outcomes, compared to 90% of prospective studies, consistent with a bias toward publishing positive results. The median effect size for retrospective studies is 94% improvement, compared to 67% for prospective studies, suggesting a potential bias towards publishing results showing higher efficacy.

Figure 20. Prospective vs. retrospective studies. The diamonds show the results of random effects meta-analysis.

Efficacy in COVID-19 quercetin studies (pooled effects)

<table>
<thead>
<tr>
<th>Efficacy</th>
<th>Prospective</th>
<th>Retrospective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favors quercetin</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Favors control</td>
<td>0.75</td>
<td>1</td>
</tr>
</tbody>
</table>

Funnel plot analysis. Funnel plots have traditionally been used for analyzing publication bias. This is invalid for COVID-19 acute treatment trials — the underlying assumptions are invalid, which we can demonstrate with a simple example. Consider a set of hypothetical perfect trials with no bias. Figure 21 plot A shows a funnel plot for a simulation of 80 perfect trials, with random group sizes, and each patient’s outcome randomly sampled (10% control event probability, and a 30% effect size for treatment). Analysis shows no asymmetry ($p > 0.05$). In plot B, we add a single typical variation in COVID-19 treatment trials — treatment delay. Consider that efficacy varies from 90% for treatment within 24 hours, reducing to 10% when treatment is delayed 3 days. In plot B, each trial's treatment delay is randomly selected. Analysis now shows highly significant asymmetry, $p < 0.0001$, with six variants of Egger's test all showing $p < 0.05$. Egger, Harbord, Macaskill, Moreno, Peters, Rothstein, Rücker, Stanley. Note that these tests fail even though treatment delay is uniformly distributed. In reality treatment delay is more complex — each trial has a different distribution of delays across patients, and the distribution across trials may be biased (e.g., late treatment trials may be more common). Similarly, many other variations in trials may produce asymmetry, including dose, administration, duration of treatment, differences in SOC, comorbidities, age, variants, and bias in design, implementation, analysis, and reporting.
Conflicts of interest. Pharmaceutical drug trials often have conflicts of interest whereby sponsors or trial staff have a financial interest in the outcome being positive. Quercetin for COVID-19 lacks this because it is an inexpensive and widely available supplement. In contrast, most COVID-19 quercetin trials have been run by physicians on the front lines with the primary goal of finding the best methods to save human lives and minimize the collateral damage caused by COVID-19. While pharmaceutical companies are careful to run trials under optimal conditions (for example, restricting patients to those most likely to benefit, only including patients that can be treated soon after onset when necessary, and ensuring accurate dosing), not all quercetin trials represent the optimal conditions for efficacy.

Limitations. Summary statistics from meta analysis necessarily lose information. As with all meta analyses, studies are heterogeneous, with differences in treatment delay, treatment regimen, patient demographics, variants, conflicts of interest, standard of care, and other factors. We provide analyses by specific outcomes and by treatment delay, and we aim to identify key characteristics in the forest plots and summaries. Results should be viewed in the context of study characteristics.

Some analyses classify treatment based on early or late administration, as done here, while others distinguish between mild, moderate, and severe cases. Viral load does not indicate degree of symptoms — for example patients may have a high viral load while being asymptomatic. With regard to treatments that have antiviral properties, timing of treatment is critical — late administration may be less helpful regardless of severity.

Details of treatment delay per patient is often not available. For example, a study may treat 90% of patients relatively early, but the events driving the outcome may come from 10% of patients treated very late. Our 5 day cutoff for early treatment may be too conservative, 5 days may be too late in many cases.

Comparison across treatments is confounded by differences in the studies performed, for example dose, variants, and conflicts of interest. Trials affiliated with special interests may use designs better suited to the preferred outcome.

In some cases, the most serious outcome has very few events, resulting in lower confidence results being used in pooled analysis, however the method is simpler and more transparent. This is less critical as the number of studies increases. Restriction to outcomes with sufficient power may be beneficial in pooled analysis and improve accuracy when there are few studies, however we maintain our pre-specified method to avoid any retrospective changes.

Studies show that combinations of treatments can be highly synergistic and may result in many times greater efficacy than individual treatments alone. Therefore standard of care may be critical and benefits may diminish or disappear if standard of care does not include certain treatments.
This real-time analysis is constantly updated based on submissions. Accuracy benefits from widespread review and submission of updates and corrections from reviewers. Less popular treatments may receive fewer reviews.

No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. Efficacy may vary significantly with different variants and within different populations. All treatments have potential side effects. Propensity to experience side effects may be predicted in advance by qualified physicians. We do not provide medical advice. Before taking any medication, consult a qualified physician who can compare all options, provide personalized advice, and provide details of risks and benefits based on individual medical history and situations.

Notes. 6 of 11 studies combine treatments. The results of quercetin alone may differ. 5 of 10 RCTs use combined treatment. Other meta analyses show significant improvements with quercetin for mortality, ICU admission, and hospitalization.

Conclusion

Studies to date show that quercetin is an effective treatment for COVID-19. Statistically significant lower risk is seen for ICU admission, hospitalization, recovery, cases, and viral clearance. 10 studies from 8 independent teams in 7 countries show statistically significant improvements. Meta analysis using the most serious outcome reported shows 49% [21-68%] lower risk. Results are similar for Randomized Controlled Trials and higher quality studies, better after excluding studies using combined treatment, and slightly worse for peer-reviewed studies. Results are robust — in exclusion sensitivity analysis 8 of 11 studies must be excluded to avoid finding statistically significant efficacy in pooled analysis.

Studies typically use advanced formulations for greatly improved bioavailability.

Other meta analyses show significant improvements with quercetin for mortality, ICU admission, and hospitalization.

Study Notes

Arslan

Does quercetin + vitamin C and bromelain reduce COVID-19 infections? RCT 113 patients in Turkey (March - August 2020)

Fewer cases with quercetin + vitamin C and bromelain (p=0.031)

c19early.org Arslan et al., SSRN, November 2020

Arslan: Small prophylaxis RCT with 113 patients showing fewer cases with quercetin + vitamin C + bromelain prophylaxis. NCT04377789. Note that this paper disappeared from SSRN without explanation.
Di Pierro

RCT 100 outpatients in Pakistan, 50 treated with quercetin phytosome, showing faster viral clearance and improved recovery with treatment. Patients in the treatment group were significantly younger (41 vs. 54).

Di Pierro

RCT 152 outpatients in Pakistan, 76 treated with quercetin phytosome, showing lower mortality, ICU admission, and hospitalization with treatment.

Di Pierro (B)
Din Ujjan

Small RCT with 50 outpatients, 25 treated with curcumin, quercetin, and vitamin D, showing improved recovery and viral clearance with treatment. 168mg curcumin, 260mg, 360IU vitamin D3 daily for 14 days.

Gérain

RCT 49 hospitalized COVID-19 patients, 25 treated with curcumin and quercetin, showing lower mortality/ICU admission and improved recovery with treatment. All patients received vitamin D. 336mg curcumin, 520mg quercetin, and 18μg vitamin D3 daily for 14 days. The control arm received 20μg vitamin D3 daily. Baseline fever favored treatment while vaccination favored control.
Khan:

RCT 50 COVID+ outpatients in Pakistan, 25 treated with curcumin, quercetin, and vitamin D, showing significantly faster viral clearance, significantly improved CRP, and faster resolution of acute symptoms (p=0.154). 168mg curcumin, 260mg quercetin and 360IU cholecalciferol.

Margolin:

Retrospective 113 outpatients, 53 (patient choice) treated with zinc, quercetin, vitamin C/D/E, l-lysine, and quina, showing lower cases with treatment. Results are subject to selection bias and limited information on the groups is provided. See journals.sagepub.com.

Onal:

Is late treatment with quercetin + bromelain and vitamin C beneficial for COVID-19? RCT 429 patients in Turkey (May - July 2020)

Higher mortality (p=0.57) and lower ICU admission (p=0.39), not sig.
Onal: RCT 447 moderate-to-severe hospitalized patients in Turkey, 52 treated with quercetin, bromelain, and vitamin C, showing no statistically significant difference in clinical outcomes. NCT04377789.

Rondanelli

<table>
<thead>
<tr>
<th>Quercetin</th>
<th>Rondanelli et al. Prophylaxis DB RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symp. case</td>
<td>Improvement</td>
</tr>
<tr>
<td></td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td>Favors quercetin</td>
</tr>
</tbody>
</table>

Is prophylaxis with quercetin beneficial for COVID-19?
Double-blind RCT 120 patients in Italy (January - May 2021)
Fewer symptomatic cases with quercetin *(p=0.042)*
c19early.org
Rondanelli et al., Life, January 2022

Rondanelli: RCT 120 healthcare workers, 60 treated with quercetin phytosome, showing lower risk of cases with treatment. Quercetin phytosome 250mg twice a day.

Shohan

<table>
<thead>
<tr>
<th>Quercetin</th>
<th>Shohan et al. LATE TREATMENT RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>Improvement</td>
</tr>
<tr>
<td>86%</td>
<td>Favors quercetin</td>
</tr>
<tr>
<td>ICU admission</td>
<td>40%</td>
</tr>
<tr>
<td>Time to discharge from..</td>
<td>32%</td>
</tr>
</tbody>
</table>

Is late treatment with quercetin beneficial for COVID-19?
RCT 60 patients in Iran (December 2020 - January 2021)
Faster recovery with quercetin *(p=0.039)*
c19early.org
Shohan et al., European J. Pharmacology, Dec 2021

Shohan: Small RCT with 60 severe hospitalized patients in Iran, 30 treated with quercetin, showing shorter time until discharge. All patients received remdesivir or favipiravir, and vitamin C, vitamin D, famotidine, zinc, dexamethasone, and magnesium (depending on serum levels). Quercetin 1000mg daily for 7 days. IRCT20200419047128N2

Zupanets

<table>
<thead>
<tr>
<th>Quercetin</th>
<th>Zupanets et al. LATE TREATMENT RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery</td>
<td>Improvement</td>
</tr>
<tr>
<td>29%</td>
<td>Favors quercetin</td>
</tr>
<tr>
<td>Recovery time</td>
<td>18%</td>
</tr>
</tbody>
</table>

Is late treatment with quercetin beneficial for COVID-19?
RCT 200 patients in Ukraine
Improved recovery with quercetin *(not stat. sig., p=0.5)*
c19early.org
Zupanets et al., Zaporozhye Med. J., Sep 2021
Appendix 1. Methods and Data

We performed ongoing searches of PubMed, medRxiv, ClinicalTrials.gov, The Cochrane Library, Google Scholar, Collabovid, Research Square, ScienceDirect, Oxford University Press, the reference lists of other studies and meta-analyses, and submissions to the site c19early.org. Search terms were quercetin, filtered for papers containing the terms COVID-19 or SARS-CoV-2. Automated searches are performed every few hours with notification of new matches. All studies regarding the use of quercetin for COVID-19 that report a comparison with a control group are included in the main analysis. Sensitivity analysis is performed, excluding studies with major issues, epidemiological studies, and studies with minimal available information. This is a living analysis and is updated regularly.

We extracted effect sizes and associated data from all studies. If studies report multiple kinds of effects then the most serious outcome is used in pooled analysis, while other outcomes are included in the outcome specific analyses. For example, if effects for mortality and cases are both reported, the effect for mortality is used, this may be different to the effect that a study focused on. If symptomatic results are reported at multiple times, we used the latest time, for example if mortality results are provided at 14 days and 28 days, the results at 28 days are used. Mortality alone is preferred over combined outcomes. Outcomes with zero events in both arms were not used (the next most serious outcome is used — no studies were excluded). For example, in low-risk populations with no mortality, a reduction in mortality with treatment is not possible, however a reduction in hospitalization, for example, is still valuable. Clinical outcome is considered more important than PCR testing status. When basically all patients recover in both treatment and control groups, preference for viral clearance and recovery is given to results mid-recovery where available (after most or all patients have recovered there is no room for an effective treatment to do better). If only individual symptom data is available, the most serious symptom has priority, for example difficulty breathing or low SpO₂ is more important than cough. When results provide an odds ratio, we computed the relative risk when possible, or converted to a relative risk according to Zhang. Reported confidence intervals and p-values were used when available, using adjusted values when provided. If multiple types of adjustments are reported including propensity score matching (PSM), the PSM results are used. Adjusted primary outcome results have preference over unadjusted results for a more serious outcome when the adjustments significantly alter results. When needed, conversion between reported p-values and confidence intervals followed Altman, Altman (B), and Fisher’s exact test was used to calculate p-values for event data. If continuity correction for zero values is required, we use the reciprocal of the opposite arm with the sum of the correction factors equal to 1 Sweeting. Results are expressed with RR < 1.0 favoring treatment, and using the risk of a negative outcome when applicable (for example, the risk of death rather than the risk of survival). If studies only report relative continuous values such as relative times, the ratio of the time for the treatment group versus the time for the control group is used. Calculations are done in Python (3.11.6) with scpy (1.11.3), pythonmeta (1.26), numpy (1.26.1), statsmodels (0.14.0), and plotly (5.17.0).

Forest plots are computed using PythonMeta Deng with the DerSimonian and Laird random effects model (the fixed effect assumption is not plausible in this case) and inverse variance weighting. Mixed-effects meta-regression results are computed with R (4.1.2) using the metafor (3.0-2) and rms (6.2-0) packages, and using the most serious sufficiently powered outcome.

We received no funding, this research is done in our spare time. We have no affiliations with any pharmaceutical companies or political parties.

We have classified studies as early treatment if most patients are not already at a severe stage at the time of treatment (for example based on oxygen status or lung involvement), and treatment started within 5 days of the onset of symptoms. If studies contain a mix of early treatment and late treatment patients, we consider the treatment time of patients contributing most to the events (for example, consider a study where most patients are treated early but late treatment patients are included, and all mortality events were observed with late treatment patients). We note that a shorter time may be preferable. Antivirals are typically only considered effective when used within a shorter timeframe, for example 0-36 or 0-48 hours for oseltamivir, with longer delays not being effective McLean, Treanor,
Early treatment

Effect extraction follows pre-specified rules as detailed above and gives priority to more serious outcomes. For pooled analyses, the first (most serious) outcome is used, which may differ from the effect a paper focuses on. Other outcomes are used in outcome specific analyses.

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Outcome</th>
<th>Effect</th>
<th>RR</th>
<th>p-value</th>
<th>Treatment Events</th>
<th>Control Events</th>
<th>NNT</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di Pierro, 1/13/2023, Randomized Controlled Trial, Pakistan, peer-reviewed, mean age 47.6, 13 authors, study period December 2020 - September 2021, trial NCT04861298 (history), excluded in exclusion analyses: randomization resulted in significant baseline differences that were not adjusted for.</td>
<td>risk of death</td>
<td>66.7% lower</td>
<td>0.33</td>
<td>1.00</td>
<td>treatment 0 of 50 (0.0%), control 1 of 50 (2.0%), NNT 50, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>risk of ICU admission</td>
<td>66.7% lower</td>
<td>0.33</td>
<td>1.00</td>
<td>treatment 0 of 50 (0.0%), control 1 of 50 (2.0%), NNT 50, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>risk of hospitalization</td>
<td>66.7% lower</td>
<td>0.33</td>
<td>1.00</td>
<td>treatment 0 of 50 (0.0%), control 1 of 50 (2.0%), NNT 50, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>risk of no recovery</td>
<td>36.8% lower</td>
<td>0.63</td>
<td>0.007</td>
<td>treatment 24 of 50 (48.0%), control 38 of 50 (76.0%), NNT 3.6, day 7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>risk of no viral clearance</td>
<td>57.9% lower</td>
<td>0.42</td>
<td>< 0.001</td>
<td>treatment 16 of 50 (32.0%), control 38 of 50 (76.0%), NNT 2.3, mid-recovery, day 7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>risk of no viral clearance</td>
<td>50.0% higher</td>
<td>1.50</td>
<td>0.25</td>
<td>treatment 3 of 50 (6.0%), control 2 of 50 (4.0%), day 14.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>risk of no viral clearance</td>
<td>66.7% lower</td>
<td>0.33</td>
<td>1.00</td>
<td>treatment 0 of 50 (0.0%), control 1 of 50 (2.0%), NNT 50, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm), day 21.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di Pierro (B), 6/8/2021, Randomized Controlled Trial, Pakistan, peer-reviewed, 19 authors, study period September 2020 - March 2021, trial NCT04578158 (history).</td>
<td>risk of death</td>
<td>85.7% lower</td>
<td>0.14</td>
<td>0.25</td>
<td>treatment 0 of 76 (0.0%), control 3 of 76 (3.9%), NNT 25, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>risk of ICU admission</td>
<td>94.1% lower</td>
<td>0.06</td>
<td>0.006</td>
<td>treatment 0 of 76 (0.0%), control 8 of 76 (10.5%), NNT 9.5, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>risk of hospitalization</td>
<td>68.2% lower</td>
<td>0.32</td>
<td>0.003</td>
<td>treatment 7 of 76 (9.2%), control 22 of 76 (28.9%), NNT 5.1.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Din Ujjan, 1/18/2023, Randomized Controlled Trial, Pakistan, peer-reviewed, 6 authors, study period 21 September, 2021 - 21 January, 2022, this trial uses multiple treatments in the treatment arm (combined with curcumin and vitamin D) - results of individual treatments may vary, trial NCT04603690 (history).

- **Risk of no recovery, 28.6% lower, RR 0.71, p = 0.11**
 - Treatment: 15 of 25 (60.0%), control 21 of 25 (84.0%), NNT 4.2, no symptoms, day 7.

- **Risk of no recovery, 71.4% lower, RR 0.29, p < 0.001**, treatment 6 of 25 (24.0%), control 21 of 25 (84.0%), NNT 1.7, ≤ 1 symptom, day 7.

- **Risk of no recovery, 76.9% lower, RR 0.23, p = 0.005**, treatment 3 of 25 (12.0%), control 13 of 25 (52.0%), NNT 2.5, ≤ 2 symptoms, day 7.

- **Risk of no recovery, 85.7% lower, RR 0.14, p = 0.23**, treatment 0 of 25 (0.0%), control 3 of 25 (12.0%), relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm), ≤ 3 symptoms, day 7.

- **Risk of no viral clearance, 90.9% lower, RR 0.09, p = 0.05**, treatment 0 of 25 (0.0%), control 5 of 25 (20.0%), NNT 5.0, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm), day 14.

- **Risk of no viral clearance, 73.7% lower, RR 0.26, p < 0.001**, treatment 5 of 25 (20.0%), control 19 of 25 (76.0%), NNT 1.8, day 7.

Khan, 5/1/2022, Randomized Controlled Trial, Pakistan, peer-reviewed, 7 authors, study period 2 September, 2021 - 28 November, 2021, this trial uses multiple treatments in the treatment arm (combined with curcumin and vitamin D) - results of individual treatments may vary, trial NCT05130671 (history).

- **Risk of no recovery, 33.3% lower, RR 0.67, p = 0.15**, treatment 10 of 25 (40.0%), control 15 of 25 (60.0%), NNT 5.0.

- **Relative CRP reduction, 39.1% better, RR 0.61, p = 0.006**, treatment 25, control 25.

- **Risk of no viral clearance, 50.0% lower, RR 0.50, p = 0.009**, treatment 10 of 25 (40.0%), control 20 of 25 (80.0%), NNT 2.5.

Gérain, 6/22/2023, Randomized Controlled Trial, Belgium, peer-reviewed, 8 authors, study period 1 April, 2021 - 29 October, 2021, this trial uses multiple treatments in the treatment arm (combined with curcumin) - results of individual treatments may vary, trial NCT04844658 (history).

- **Risk of death, 67.1% lower, RR 0.33, p = 0.49**, treatment 0 of 25 (0.0%), control 1 of 24 (4.2%), NNT 24, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm), day 7.

- **Risk of death/ICU, 91.1% lower, RR 0.09, p = 0.02**, treatment 0 of 25 (0.0%), control 5 of 24 (20.8%), NNT 4.8, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm), day 7.

- **Risk of mechanical ventilation, 89.1% lower, RR 0.11, p = 0.05**, treatment 0 of 25 (0.0%), control 4 of 24 (16.7%), NNT 6.0, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm), day 7.

Late treatment

Effect extraction follows pre-specified rules as detailed above and gives priority to more serious outcomes. For pooled analyses, the first (most serious) outcome is used, which may differ from the effect a paper focuses on. Other outcomes are used in outcome specific analyses.

- **Risk of death, 67.1% lower, RR 0.33, p = 0.49**, treatment 0 of 25 (0.0%), control 1 of 24 (4.2%), NNT 24, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm), day 7.

- **Risk of death/ICU, 91.1% lower, RR 0.09, p = 0.02**, treatment 0 of 25 (0.0%), control 5 of 24 (20.8%), NNT 4.8, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm), day 7.

- **Risk of mechanical ventilation, 89.1% lower, RR 0.11, p = 0.05**, treatment 0 of 25 (0.0%), control 4 of 24 (16.7%), NNT 6.0, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm), day 7.
<table>
<thead>
<tr>
<th>Study</th>
<th>Prophylaxis</th>
<th>Effect</th>
<th>Outcome</th>
<th>RR</th>
<th>p</th>
<th>NNT</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onal, 1/19/2021, Randomized Controlled Trial, Turkey, peer-reviewed, 10 authors, study period 7 May, 2020 - 8 July, 2020, this trial uses multiple treatments in the treatment arm (combined with bromelain and vitamin C) - results of individual treatments may vary, trial NCT04377789 (history).</td>
<td>Prophylaxis</td>
<td>risk of death, 29.3% higher, RR 1.29, p = 0.57, treatment 1 of 49 (2.0%), control 6 of 380 (1.6%).</td>
<td>risk of ICU admission, 94.0% lower, RR 0.06, p = 0.39, treatment 0 of 49 (0.0%), control 14 of 380 (3.7%), NNT 27, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shohan, 12/2/2021, Randomized Controlled Trial, Iran, peer-reviewed, mean age 50.9 (treatment) 52.7 (control), 8 authors, study period December 2020 - January 2021, average treatment delay 7.8 days.</td>
<td>Prophylaxis</td>
<td>risk of death, 85.7% lower, RR 0.14, p = 0.24, treatment 0 of 30 (0.0%), control 3 of 30 (10.0%), NNT 10.0, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm).</td>
<td>risk of ICU admission, 40.0% lower, RR 0.60, p = 0.71, treatment 3 of 30 (10.0%), control 5 of 30 (16.7%), NNT 15.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zupanets, 9/1/2021, Randomized Controlled Trial, Ukraine, peer-reviewed, 14 authors.</td>
<td>Prophylaxis</td>
<td>risk of no recovery, 29.4% lower, RR 0.71, p = 0.50, treatment 9 of 99 (9.1%), control 13 of 101 (12.9%), NNT 26.</td>
<td>recovery time, 18.2% lower, relative time 0.82, p = 0.03, treatment 99, control 101.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prophylaxis

Effect extraction follows pre-specified rules as detailed above and gives priority to more serious outcomes. For pooled analyses, the first (most serious) outcome is used, which may differ from the effect a paper focuses on. Other outcomes are used in outcome specific analyses.
<table>
<thead>
<tr>
<th>Arslan, 11/16/2020, Randomized Controlled Trial, Turkey, preprint, 7 authors, study period 20 March, 2020 - 31 August, 2020, this trial uses multiple treatments in the treatment arm (combined with vitamin C and bromelain) - results of individual treatments may vary, trial NCT04377789 (history), excluded in exclusion analyses: paper no longer available at the source, and the contact does not reply to queries.</th>
<th>risk of case, 91.7% lower, RR 0.08, p = 0.03, treatment 1 of 71 (1.4%), control 9 of 42 (21.4%), NNT 5.0, adjusted per study, inverted to make RR<1 favor treatment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margolin, 7/6/2021, retrospective, USA, peer-reviewed, 5 authors, this trial uses multiple treatments in the treatment arm (combined with zinc, vitamin C/D/E, l-lysine, and quina) - results of individual treatments may vary.</td>
<td>risk of case, 94.4% lower, RR 0.06, p = 0.003, treatment 0 of 53 (0.0%), control 9 of 60 (15.0%), NNT 6.7, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm).</td>
</tr>
<tr>
<td>Rondanelli, 1/4/2022, Double Blind Randomized Controlled Trial, placebo-controlled, Italy, peer-reviewed, 12 authors, study period 12 January, 2021 - 25 May, 2021, trial NCT05037240 (history).</td>
<td>risk of symptomatic case, 92.9% lower, HR 0.07, p = 0.04, treatment 1 of 60 (1.7%), control 4 of 60 (6.7%), adjusted per study, inverted to make HR<1 favor treatment, Cox proportional risk.</td>
</tr>
</tbody>
</table>

Supplementary Data

Supplementary Data

References

3. **Alsaidi** et al., Grithsin and Carrageenan Combination Results in Antiviral Synergy against SARS-CoV-1 and 2 in a Pseudoviral Model, Marine Drugs, doi:10.3390/md19080418.

5. **Altman (B)** et al., How to obtain the confidence interval from a P value, BMJ, doi:10.1136/bmj.d2090.

7. **Anglemyer** et al., Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials, Cochrane Database of Systematic Reviews 2014, Issue 4, doi:10.1002/14651858.MR000034.pub2.

13. c19early.org, c19early.org/timeline.html.

27. Faria et al., Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil, Science, doi:10.1126/science.abh2644.

32. Harbord et al., A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints, Statistics in Medicine, doi:10.1002/sim.2380.

34. Ibeh et al., Computational studies of potential antiviral compounds from some selected Nigerian medicinal plants against SARS-CoV-2 proteins, Informatics in Medicine Unlocked, doi:10.1016/j.imu.2023.101230.

40. journals.sagepub.com, journals.sagepub.com/doi/full/10.1177/2515690X211058417.

41. Kandeil et al., Bioactive Polyphenolic Compounds Showing Strong Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus 2, Pathogens, doi:10.3390/pathogens10060758.

42. Karita et al., Trajectory of viral load in a prospective population-based cohort with incident SARS-CoV-2 G614 infection, medRxiv, doi:10.1101/2021.08.27.21262754.

47. Macaskill et al., A comparison of methods to detect publication bias in meta-analysis, Statistics in Medicine, doi:10.1002/sim.698.

50. McLean et al., Impact of Late Oseltamivir Treatment on Influenza Symptoms in the Outpatient Setting: Results of a Randomized Trial, Open Forum Infect. Dis. September 2015, 2:3, doi:10.1093/ofid/ofv100.

51. Meeus, G., Online Comment, twitter.com/gertmeeus_MD/status/1386636373889781761.

60. Ostrov et al., Highly Specific Sigma Receptor Ligands Exhibit Anti-Viral Properties in SARS-CoV-2 Infected Cells, Pathogens, doi:10.3390/pathogens10111514.

66. Rücker et al., Arcsine test for publication bias in meta-analyses with binary outcomes, Statistics in Medicine, doi:10.1002/sim.2971.

68. Sekiou et al., In-Silico Identification of Potent Inhibitors of COVID-19 Main Protease (Mpro) and Angiotensin Converting Enzyme 2 (ACE2) from Natural Products: Quercetin, Hispidulin, and Cirsimaritin Exhibited Better Potential Inhibition than Hydroxy-Chloroquine Against COVID-19 Main Protease Active Site and ACE2, ChemRxiv, doi:10.26434/chemrxiv.12181404.v1.

75. Thapa et al., *In-silico Approach for Predicting the Inhibitory Effect of Home Remedies on Severe Acute Respiratory Syndrome Coronavirus-2*, Makara Journal of Science, doi:10.7454/mss.v27i3.1609.

78. Willett et al., *The hyper-transmissible SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine escape and a switch in cell entry mechanism*, medRxiv, doi:10.1101/2022.01.03.21268111.

79. Williams, T., *Not All Ivermectin Is Created Equal: Comparing The Quality of 11 Different Ivermectin Sources*, Do Your Own Research, doyourownresearch.substack.com/p/not-all-ivermectin-is-created-equal.

84. Zavascki et al., *Advanced ventilatory support and mortality in hospitalized patients with COVID-19 caused by Gamma (P.1) variant of concern compared to other lineages: cohort study at a reference center in Brazil*, Research Square, doi:10.21203/rs.3.rs-910467/v1.

