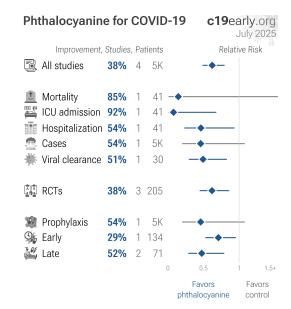
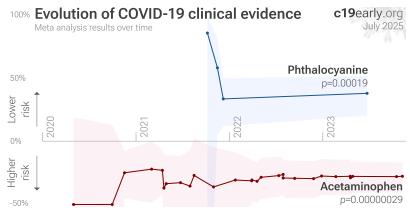
Phthalocyanine reduces COVID-19 risk: real-time meta analysis of 4 studies

@CovidAnalysis, July 2025, Version 3 https://c19early.org/ptmeta.html

Abstract


Significantly lower risk is seen for ICU admission, hospitalization, recovery, and viral clearance. 3 studies from 3 independent teams (all from the same country) show significant benefit.


Meta analysis using the most serious outcome reported shows 38% [20-51%] lower risk. Results are similar for Randomized Controlled Trials.

No treatment is 100% effective. Protocols combine safe and effective options with individual risk/benefit analysis and monitoring. Other treatments are more effective. Phthalocyanine may affect the natural microbiome, especially with prolonged use. All data and sources to reproduce this analysis are in the appendix.

Serious Outcome Risk

PHTHALOCYANINE FOR COVID-19 — HIGHLIGHTS

Phthalocyanine reduces risk with very high confidence for pooled analysis, low confidence for ICU admission, hospitalization, recovery, cases, and viral clearance, and very low confidence for mortality.

33rd treatment shown effective in December 2021, now with p = 0.00019 from 4 studies.

Real-time updates and corrections with a consistent protocol for 172 treatments. Outcome specific analysis and combined evidence from all studies including treatment delay, a primary confounding factor.

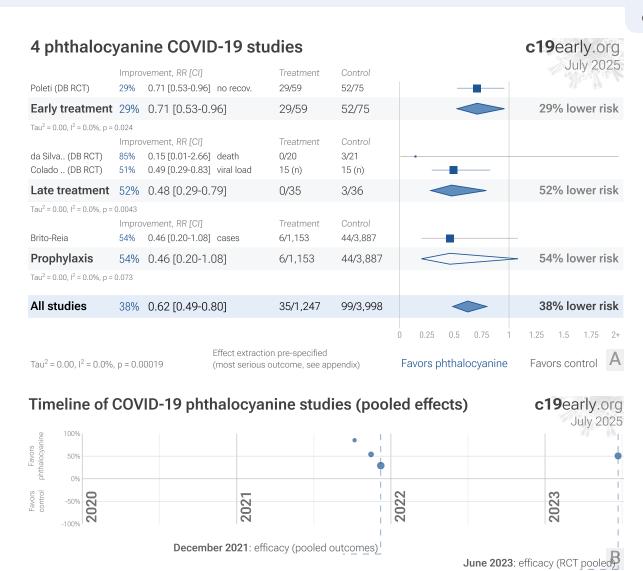
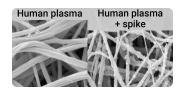



Figure 1. A. Random effects meta-analysis. This plot shows pooled effects, see the specific outcome analyses for individual outcomes. Analysis validating pooled outcomes for COVID-19 can be found below. Effect extraction is pre-specified, using the most serious outcome reported. For details see the appendix. B. Timeline of results in phthalocyanine studies. The marked dates indicate the time when efficacy was known with a statistically significant improvement of ≥10% from ≥3 studies for pooled outcomes and pooled outcomes in RCTs. Efficacy based on RCTs only was delayed by 18.5 months, compared to using all studies.

Introduction

Immediate treatment recommended

SARS-CoV-2 infection typically starts in the upper respiratory tract, and specifically the nasal respiratory epithelium. Entry via the eyes and gastrointestinal tract is possible, but less common, and entry via other routes is rare. Infection may progress to the lower respiratory tract, other tissues, and the nervous and cardiovascular systems. The primary initial route for entry into the central nervous system is thought to be the olfactory nerve in the nasal cavity². Progression may lead to cytokine storm, pneumonia, ARDS, neurological injury³⁻¹⁵ and cognitive deficits ^{6,11}, cardiovascular complications ¹⁶⁻²⁰, organ failure, and death. Even mild untreated infections may result in persistent cognitive deficits ²¹—the spike protein binds to fibrin leading to fibrinolysis-resistant blood clots, thromboinflammation,

Figure 2. SARS-CoV-2 spike protein fibrin binding leads to thromboinflammation and neuropathology, from ¹.

and neuropathology. Systemic treatments may be insufficient to prevent neurological damage ¹⁰. Minimizing replication as early as possible is recommended.

Targeted treatment to the primary location of initial infection

Logically, stopping replication in the upper respiratory tract should be simpler and more effective. Wu et al., using an airway organoid model incorporating many in vivo aspects, show that SARS-CoV-2 initially attaches to cilia—hair-like structures responsible for moving the mucus layer and where ACE2 is localized in nasal epithelial cells ²⁴. The mucus layer and the need for ciliary transport slow down infection, providing more time for localized treatments ^{22,23}. Early or prophylactic nasopharyngeal/oropharyngeal treatment may avoid the consequences of viral replication in other tissues, and avoid the requirement for systemic treatments with greater potential for side effects.

Figure 3. SARS-CoV-2 virions attached to cilia of nasal epithelial cells, from Chien-Ting Wu ^{22,23}.

Many treatments are expected to modulate infection

SARS-CoV-2 infection and replication involves the complex interplay of 100+ host and viral proteins and other factors ^{A,25-32}, providing many therapeutic targets for which many existing compounds have known activity. Scientists have predicted that over 9,000 compounds may reduce COVID-19 risk ³³, either by directly minimizing infection or replication, by supporting immune system function, or by minimizing secondary complications.

Analysis

We analyze all significant controlled studies of phthalocyanine for COVID-19. Search methods, inclusion criteria, effect extraction criteria (more serious outcomes have priority), all individual study data, PRISMA answers, and statistical methods are detailed in Appendix 1. We present random effects meta-analysis results for all studies, studies within each treatment stage, individual outcomes, and Randomized Controlled Trials (RCTs).

Treatment timing

Figure 4 shows stages of possible treatment for COVID-19. Prophylaxis refers to regularly taking medication before becoming sick, in order to prevent or minimize infection. Early Treatment refers to treatment immediately or soon after symptoms appear, while Late Treatment refers to more delayed treatment.

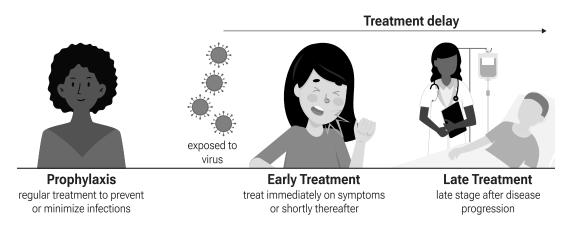
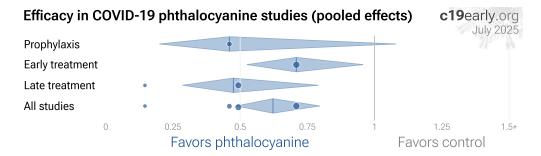


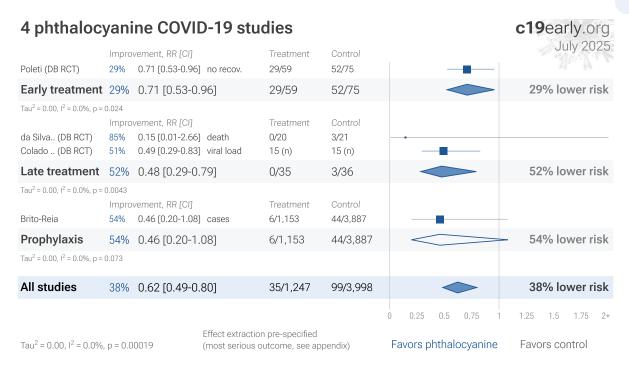
Figure 4. Treatment stages.

Results

Table 1 summarizes the results for all stages combined and for Randomized Controlled Trials. Table 2 shows results by treatment stage. Figure 5 plots individual results by treatment stage. Figure 6, 7, 8, 9, 10, 11, and 12 show forest plots for random effects meta-analysis of all studies with pooled effects, mortality results, ICU admission, hospitalization, recovery, cases, and viral clearance.



	Relative Risk	Studies	Patients
All studies	0.62 [0.49-0.80] ***	4	5,245
RCTs	0.62 [0.45-0.86] **	3	205


Table 1. Random effects meta-analysis for all stages combined and for Randomized Controlled Trials. Results show the relative risk with treatment and the 95% confidence interval. * p<0.05 ** p<0.01.

	Early treatment	Late treatment	Prophylaxis
All studies		0.48 [0.29-0.79] ** 0.48 [0.29-0.79] **	0.46 [0.20-1.08]
RUIS	0.71 [0.33-0.96] "	U.40 [U.29-U.79] ""	

Table 2. Random effects meta-analysis results by treatment stage. Results show the relative risk with treatment and the 95% confidence interval. * p < 0.05 ** p < 0.01.

Figure 5. Scatter plot showing the most serious outcome in all studies, and for studies within each stage. Diamonds shows the results of random effects meta-analysis.

Figure 6. Random effects meta-analysis for all studies. This plot shows pooled effects, see the specific outcome analyses for individual outcomes. Analysis validating pooled outcomes for COVID-19 can be found below. Effect extraction is prespecified, using the most serious outcome reported. For details see the appendix.

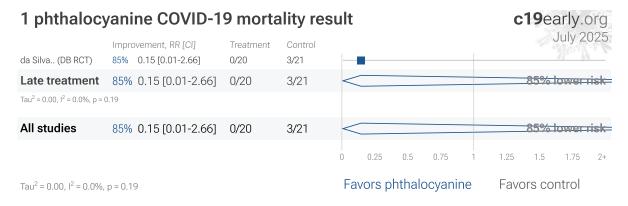


Figure 7. Random effects meta-analysis for mortality results.

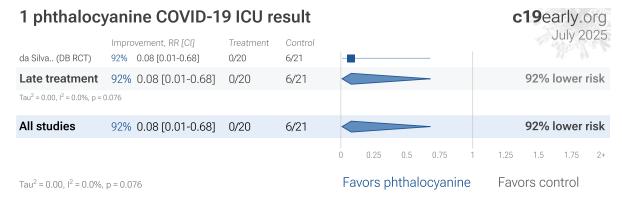


Figure 8. Random effects meta-analysis for ICU admission.

Figure 9. Random effects meta-analysis for hospitalization.

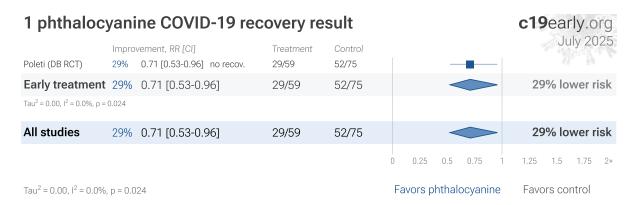


Figure 10. Random effects meta-analysis for recovery.

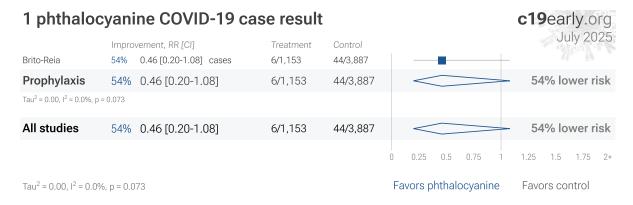


Figure 11. Random effects meta-analysis for cases.

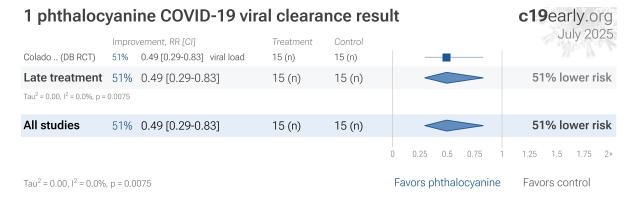


Figure 12. Random effects meta-analysis for viral clearance.

Randomized Controlled Trials (RCTs)

Figure 13 shows a comparison of results for RCTs and observational studies. Figure 14 and 15 show forest plots for random effects meta-analysis of all Randomized Controlled Trials and RCT mortality results. RCT results are included in Table 1 and Table 2.

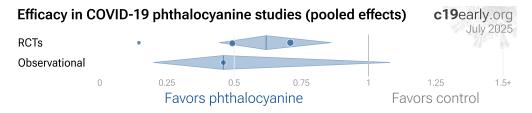


Figure 13. Results for RCTs and observational studies.

RCTs have many potential biases

RCTs help to make study groups more similar and can provide a higher level of evidence, however they are subject to many biases ³⁴, and analysis of double-blind RCTs has identified extreme levels of bias ³⁵. For COVID-19, the overhead may delay treatment, dramatically compromising efficacy; they may encourage monotherapy for simplicity at the cost of efficacy which may rely on combined or synergistic effects; the participants that sign up may not reflect real world usage or the population that benefits most in terms of age, comorbidities, severity of illness, or other factors; standard of care may be compromised and unable to evolve quickly based on emerging research for new diseases; errors may be made in randomization and medication delivery; and investigators may have hidden agendas or vested interests influencing design, operation, analysis, reporting, and the potential for fraud. All of these biases have been observed with COVID-19 RCTs. There is no guarantee that a specific RCT provides a higher level of evidence.

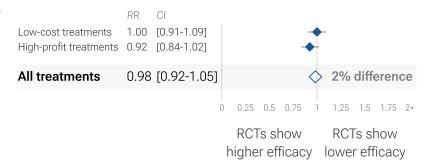
Conflicts of interest for COVID-19 RCTs

RCTs are expensive and many RCTs are funded by pharmaceutical companies or interests closely aligned with pharmaceutical companies. For COVID-19, this creates an incentive to show efficacy for patented commercial products, and an incentive to show a lack of efficacy for inexpensive treatments. The bias is expected to be significant, for example Als-Nielsen et al. analyzed 370 RCTs from Cochrane reviews, showing that trials funded by for-profit organizations were 5 times more likely to recommend the experimental drug compared with those funded by nonprofit organizations. For COVID-19, some major philanthropic organizations are largely funded by investments with extreme conflicts of interest for and against specific COVID-19 interventions.

RCTs for novel acute diseases requiring rapid treatment

High quality RCTs for novel acute diseases are more challenging, with increased ethical issues due to the urgency of treatment, increased risk due to enrollment delays, and more difficult design with a rapidly evolving evidence base. For COVID-19, the most common site of initial infection is the upper respiratory tract. Immediate treatment is likely to be most successful and may prevent or slow progression to other parts of the body. For a non-prophylaxis RCT, it makes sense to provide treatment in advance and instruct patients to use it immediately on symptoms, just as some governments have done by providing medication kits in advance. Unfortunately, no RCTs have been done in this way. Every treatment RCT to date involves delayed treatment. Among the 172 treatments we have analyzed, 67% of RCTs involve very late treatment 5+ days after onset. No non-prophylaxis COVID-19 RCTs match the potential real-world use of early treatments. They may more accurately represent results for treatments that require visiting a medical facility, e.g., those requiring intravenous administration.

RCT bias for widely available treatments


RCTs have a bias against finding an effect for interventions that are widely available — patients that believe they need the intervention are more likely to decline participation and take the intervention. RCTs for phthalocyanine are more likely to enroll low-risk participants that do not need treatment to recover, making the results less applicable to clinical

practice. This bias is likely to be greater for widely known treatments, and may be greater when the risk of a serious outcome is overstated. This bias does not apply to the typical pharmaceutical trial of a new drug that is otherwise unavailable.

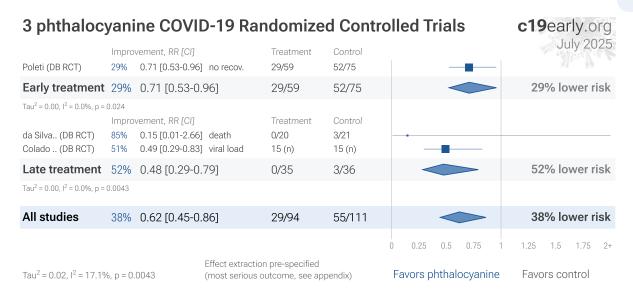
Observational studies have been shown to be reliable

Evidence shows that observational studies can also provide reliable results. Concato et al. found that well-designed observational studies do not systematically overestimate the magnitude of the effects of treatment compared to RCTs. Anglemyer et al. analyzed reviews comparing RCTs to observational studies and found little evidence for significant differences in effect estimates. We performed a similar analysis across

RCT vs. observational from 5,918 studies c19early.org Jul 2025

Figure 16. For COVID-19, observational study results do not systematically differ from RCTs, RR 0.98 [0.92-1.05] across 172 treatments ³⁷.

the 172 treatments we cover, showing no significant difference in the results of RCTs compared to observational studies, RR 0.98 [0.92-1.05] ⁴⁰. Similar results are found for all low-cost treatments, RR 1.00 [0.91-1.09]. High-cost treatments show a non-significant trend towards RCTs showing greater efficacy, RR 0.92 [0.84-1.02]. Details can be found in the supplementary data. *Lee (B) et al.* showed that only 14% of the guidelines of the Infectious Diseases Society of America were based on RCTs. Evaluation of studies relies on an understanding of the study and potential biases. Limitations in an RCT can outweigh the benefits, for example excessive dosages, excessive treatment delays, or remote survey bias may have a greater effect on results. Ethical issues may also prevent running RCTs for known effective treatments. For more on issues with RCTs see ^{42,43}.


Using all studies identifies efficacy 8+ months faster (9+ months for low-cost treatments)

Currently, 55 of the treatments we analyze show statistically significant efficacy or harm, defined as \geq 10% decreased risk or >0% increased risk from \geq 3 studies. Of these, 58% have been confirmed in RCTs, with a mean delay of 7.7 months (64% with 8.9 months delay for low-cost treatments). The remaining treatments either have no RCTs, or the point estimate is consistent.

Summary

We need to evaluate each trial on its own merits. RCTs for a given medication and disease may be more reliable, however they may also be less reliable. For off-patent medications, very high conflict of interest trials may be more likely to be RCTs, and more likely to be large trials that dominate meta analyses.

Figure 14. Random effects meta-analysis for all Randomized Controlled Trials. This plot shows pooled effects, see the specific outcome analyses for individual outcomes. Analysis validating pooled outcomes for COVID-19 can be found below. Effect extraction is pre-specified, using the most serious outcome reported. For details see the appendix.

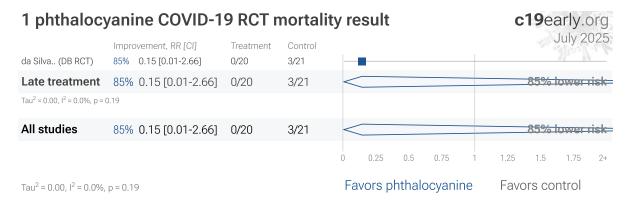


Figure 15. Random effects meta-analysis for RCT mortality results.

Application

In addition to the dosage and frequency of administration, efficacy for nasopharyngeal/oropharyngeal treatments may depend on many other details. For example considering sprays, viscosity, mucoadhesion, sprayability, and application angle are important.

Akash et al. performed a computational fluid dynamics study of nasal spray administration showing 100x improvement in nasopharyngeal drug delivery using a new spray placement protocol, which involves holding the spay nozzle as horizontally as possible at the nostril, with a slight tilt towards the cheeks. The study also found the optimal droplet size range for nasopharyngeal deposition was $\sim 7-17 \mu m$.

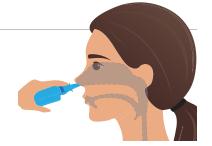
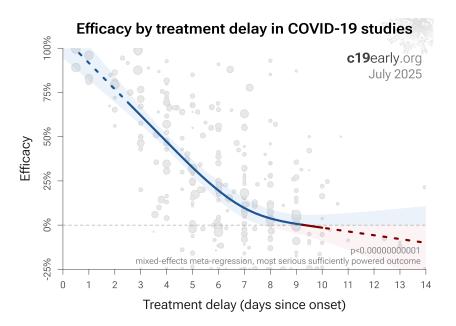


Figure 17. Optimal spray angle may increase nasopharyngeal drug delivery 100x for nasal sprays, adapted from Akash et al.

Heterogeneity

Heterogeneity in COVID-19 studies arises from many factors including:


Treatment delay

The time between infection or the onset of symptoms and treatment may critically affect how well a treatment works. For example an antiviral may be very effective when used early but may not be effective in late stage disease, and may even be harmful. Oseltamivir, for example, is generally only considered effective for influenza when used within 0-36 or 0-48 hours ^{45,46}. Baloxavir marboxil studies for influenza also show that treatment delay is critical — *Ikematsu* et al. report an 86% reduction in cases for post-exposure prophylaxis, *Hayden* et al. show a 33 hour reduction in the time to alleviation of symptoms for treatment within 24 hours and a reduction of 13 hours for treatment within 24-48 hours, and *Kumar* et al. report only 2.5 hours improvement for inpatient treatment.

Treatment delay	Result
Post-exposure prophylaxis	86% fewer cases 47
<24 hours	-33 hours symptoms 48
24-48 hours	-13 hours symptoms 48
Inpatients	-2.5 hours to improvement ⁴⁹

Table 3. Studies of baloxavir marboxil for influenza show that early treatment is more effective.

Figure 18 shows a mixed-effects meta-regression for efficacy as a function of treatment delay in COVID-19 studies from 172 treatments, showing that efficacy declines rapidly with treatment delay. Early treatment is critical for COVID-19.

Figure 18. Early treatment is more effective. Meta-regression showing efficacy as a function of treatment delay in COVID-19 studies from 172 treatments.

Patient demographics

Details of the patient population including age and comorbidities may critically affect how well a treatment works. For example, many COVID-19 studies with relatively young low-comorbidity patients show all patients recovering quickly with or without treatment. In such cases, there is little room for an effective treatment to improve results, for example as in López-Medina et al.

SARS-CoV-2 variants

Efficacy may depend critically on the distribution of SARS-CoV-2 variants encountered by patients. Risk varies significantly across variants ⁵¹, for example the Gamma variant shows significantly different characteristics ⁵²⁻⁵⁵. Different mechanisms of action may be more or less effective depending on variants, for example the degree to which TMPRSS2 contributes to viral entry can differ across variants ^{56,57}.

Treatment regimen

Effectiveness may depend strongly on the dosage and treatment regimen.

Medication quality

The quality of medications may vary significantly between manufacturers and production batches, which may significantly affect efficacy and safety. Williams et al. analyze ivermectin from 11 different sources, showing highly variable antiparasitic efficacy across different manufacturers. Xu et al. analyze a treatment from two different manufacturers, showing 9 different impurities, with significantly different concentrations for each manufacturer.

Other treatments

The use of other treatments may significantly affect outcomes, including supplements, other medications, or other interventions such as prone positioning. Treatments may be synergistic ⁶⁰⁻⁷⁶, therefore efficacy may depend strongly on combined treatments.

Effect measured

Across all studies there is a strong association between different outcomes, for example improved recovery is strongly associated with lower mortality. However, efficacy may differ depending on the effect measured, for example a treatment may be more effective against secondary complications and have minimal effect on viral clearance.

Meta analysis

The distribution of studies will alter the outcome of a meta analysis. Consider a simplified example where everything is equal except for the treatment delay, and effectiveness decreases to zero or below with increasing delay. If there are many studies using very late treatment, the outcome may be negative, even though early treatment is very effective. All meta analyses combine heterogeneous studies, varying in population, variants, and potentially all factors above, and therefore may obscure efficacy by including studies where treatment is less effective. Generally, we expect the estimated effect size from meta analysis to be less than that for the optimal case. Looking at all studies is valuable for providing an overview of all research, important to avoid cherry-picking, and informative when a positive result is found despite combining less-optimal situations. However, the resulting estimate does not apply to specific cases such as early treatment in high-risk populations. While we present results for all studies, we also present treatment time and individual outcome analyses, which may be more informative for specific use cases.

Pooled Effects

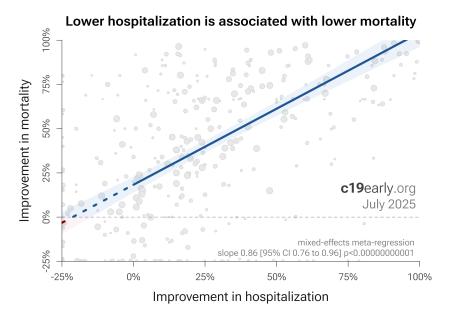
Combining studies is required

For COVID-19, delay in clinical results translates into additional death and morbidity, as well as additional economic and societal damage. Combining the results of studies reporting different outcomes is required. There may be no mortality in a trial with low-risk patients, however a reduction in severity or improved viral clearance may translate into lower mortality in a high-risk population. Different studies may report lower severity, improved recovery, and lower

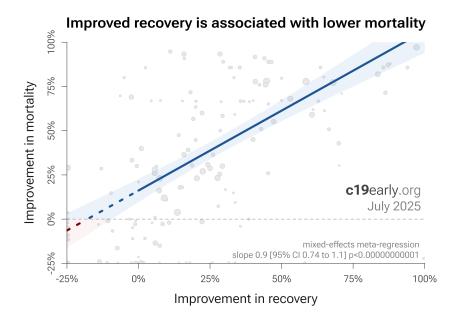
mortality, and the significance may be very high when combining the results. "The studies reported different outcomes" is not a good reason for disregarding results. Pooling the results of studies reporting different outcomes allows us to use more of the available information. Logically we should, and do, use additional information when evaluating treatments—for example dose-response and treatment delay-response relationships provide additional evidence of efficacy that is considered when reviewing the evidence for a treatment.

Specific outcome and pooled analyses

We present both specific outcome and pooled analyses. In order to combine the results of studies reporting different outcomes we use the most serious outcome reported in each study, based on the thesis that improvement in the most serious outcome provides comparable measures of efficacy for a treatment. A critical advantage of this approach is simplicity and transparency. There are many other ways to combine evidence for different outcomes, along with additional evidence such as dose-response relationships, however these increase complexity.


Ethical and practical issues limit high-risk trials

Trials with high-risk patients may be restricted due to ethics for treatments that are known or expected to be effective, and they increase difficulty for recruiting. Using less severe outcomes as a proxy for more serious outcomes allows faster and safer collection of evidence.


Validating pooled outcome analysis for COVID-19

For many COVID-19 treatments, a reduction in mortality logically follows from a reduction in hospitalization, which follows from a reduction in symptomatic cases, which follows from a reduction in PCR positivity. We can directly test this for COVID-19.

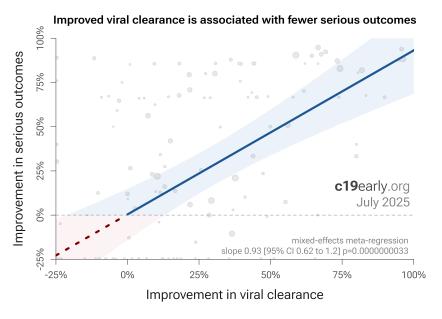

Analysis of the the association between different outcomes across studies from all 172 treatments we cover confirms the validity of pooled outcome analysis for COVID-19. Figure 19 shows that lower hospitalization is very strongly associated with lower mortality (p < 0.0000000000001). Similarly, Figure 20 shows that improved recovery is very strongly associated with lower mortality (p < 0.0000000000001). Considering the extremes, Singh et al. show an association between viral clearance and hospitalization or death, with p = 0.003 after excluding one large outlier from a mutagenic treatment, and based on 44 RCTs including 52,384 patients. Figure 21 shows that improved viral clearance is strongly associated with fewer serious outcomes. The association is very similar to Singh et al., with higher confidence due to the larger number of studies. As with Singh et al., the confidence increases when excluding the outlier treatment, from p = 0.0000000082 to p = 0.0000000033.

Figure 19. Lower hospitalization is associated with lower mortality, supporting pooled outcome analysis.

Figure 20. Improved recovery is associated with lower mortality, supporting pooled outcome analysis.

Figure 19. Improved viral clearance is associated with fewer serious outcomes, supporting pooled outcome analysis.

Pooled outcomes identify efficacy 5 months faster (7 months for RCTs)

Currently, 55 of the treatments we analyze show statistically significant efficacy or harm, defined as \geq 10% decreased risk or >0% increased risk from \geq 3 studies. 88% of these have been confirmed with one or more specific outcomes, with a mean delay of 4.9 months. When restricting to RCTs only, 57% of treatments showing statistically significant efficacy/harm with pooled effects have been confirmed with one or more specific outcomes, with a mean delay of 7.3 months. Figure 22 shows when treatments were found effective during the pandemic. Pooled outcomes often resulted in earlier detection of efficacy.

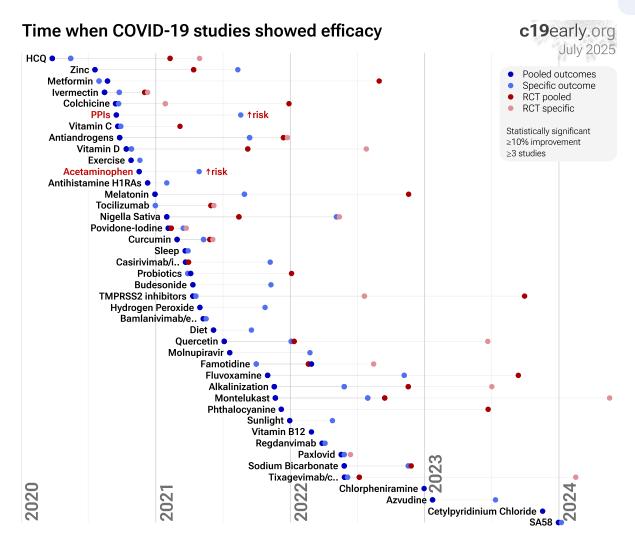


Figure 22. The time when studies showed that treatments were effective, defined as statistically significant improvement of ≥10% from ≥3 studies. Pooled results typically show efficacy earlier than specific outcome results. Results from all studies often shows efficacy much earlier than when restricting to RCTs. Results reflect conditions as used in trials to date, these depend on the population treated, treatment delay, and treatment regimen.

Limitations

Pooled analysis could hide efficacy, for example a treatment that is beneficial for late stage patients but has no effect on viral clearance may show no efficacy if most studies only examine viral clearance. In practice, it is rare for a non-antiviral treatment to report viral clearance and to not report clinical outcomes; and in practice other sources of heterogeneity such as difference in treatment delay is more likely to hide efficacy.

Summary

Analysis validates the use of pooled effects and shows significantly faster detection of efficacy on average. However, as with all meta analyses, it is important to review the different studies included. We also present individual outcome analyses, which may be more informative for specific use cases.

Discussion

PCR viral load

Analysis of short-term changes in viral load using PCR may not detect effective treatments because PCR is unable to differentiate between intact infectious virus and non-infectious or destroyed virus particles. For example Tarragó-Gil, Alemany perform RCTs with cetylpyridinium chloride (CPC) mouthwash that show no difference in PCR viral load, however there was significantly increased detection of SARS-CoV-2 nucleocapsid protein, indicating viral lysis. CPC

inactivates SARS-CoV-2 by degrading its membrane, exposing the nucleocapsid of the virus. To better estimate changes in viral load and infectivity, methods like viral culture that can differentiate intact vs. degraded virus are preferred.

Nasopharyngeal/oropharyngeal administration

Studies to date use a variety of administration methods to the respiratory tract, including nasal and oral sprays, nasal irrigation, oral rinses, and inhalation. Table 4 shows the relative efficacy for nasal, oral, and combined administration. Combined administration shows the best results, and nasal administration is more effective than oral. Precise efficacy depends on the details of administration, e.g., mucoadhesion and sprayability for sprays.

Nasal/oral administration to the respiratory tract	Improvement	Studies
Oral spray/rinse	38% [25-49%]	11
Nasal spray/rinse	58% [49-65%]	20
Nasal & oral	91% [74-97%]	7

Table 4. Respiratory tract administration efficacy. Relative efficacy of nasal, oral, and combined nasal/oral administration for treatments administered directly to the respiratory tract, based on studies for astodrimer sodium, chlorhexidine, cetylpyridinium chloride, chlorpheniramine, iota-carrageenan, hydrogen peroxide, nitric oxide, povidone-iodine, plasma-activated water, alkalinization, phthalocyanine, sodium bicarbonate, pHOXWELL, and sentinox. Results show random effects meta analysis for the most serious outcome reported for all prophylaxis and early treatment studies.

Impact on the microbiome

Nasopharyngeal/oropharyngeal treatments may not be highly selective. In addition to inhibiting or disabling SARS-CoV-2, they may also be harmful to beneficial microbes, disrupting the natural microbiome in the oral cavity and nasal passages that have important protective and metabolic roles ⁸⁰. This may be especially important for prolonged use or overuse. Table 5 summarizes the potential for common nasopharyngeal/oropharyngeal treatments to affect the natural microbiome.

Treatment	Microbiome disruption potential	Notes
lota-carrageenan	Low	Primarily antiviral, however extended use may mildly affect the microbiome
Nitric Oxide	Low to moderate	More selective towards pathogens, however excessive concentrations or prolonged use may disrupt the balance of bacteria
Alkalinization	Moderate	Increases pH, negatively impacting beneficial microbes that thrive in a slightly acidic environment
Cetylpyridinium Chloride	Moderate	Quaternary ammonium broad-spectrum antiseptic that can disrupt beneficial and harmful bacteria
Phthalocyanine	Moderate to high	Photodynamic compound with antimicrobial activity, likely to affect the microbiome
Chlorhexidine	High	Potent antiseptic with broad activity, significantly disrupts the microbiome
Hydrogen Peroxide	High	Strong oxidizer, harming both beneficial and harmful microbes
Povidone-lodine	High	Potent broad-spectrum antiseptic harmful to beneficial microbes

 Table 5. Potential effect of treatments on the nasophyrngeal/oropharyngeal microbiome.

Publication bias

Publishing is often biased towards positive results, however evidence suggests that there may be a negative bias for inexpensive treatments for COVID-19. Both negative and positive results are very important for COVID-19, media in many countries prioritizes negative results for inexpensive treatments (inverting the typical incentive for scientists that value media recognition), and there are many reports of difficulty publishing positive results ⁸¹⁻⁸⁴. For phthalocyanine, there is currently not enough data to evaluate publication bias with high confidence.

Conflicts of interest

Pharmaceutical drug trials often have conflicts of interest whereby sponsors or trial staff have a financial interest in the outcome being positive. Phthalocyanine for COVID-19 lacks this because it is off-patent, has multiple manufacturers, and is very low cost. In contrast, most COVID-19 phthalocyanine trials have been run by physicians on the front lines with the primary goal of finding the best methods to save human lives and minimize the collateral damage caused by COVID-19. While pharmaceutical companies are careful to run trials under optimal conditions (for example, restricting patients to those most likely to benefit, only including patients that can be treated soon after onset when necessary, and ensuring accurate dosing), not all phthalocyanine trials represent the optimal conditions for efficacy.

Limitations

Summary statistics from meta analysis necessarily lose information. As with all meta analyses, studies are heterogeneous, with differences in treatment delay, treatment regimen, patient demographics, variants, conflicts of interest, standard of care, and other factors. We provide analyses for specific outcomes and by treatment delay, and we aim to identify key characteristics in the forest plots and summaries. Results should be viewed in the context of study characteristics.

Some analyses classify treatment based on early or late administration, as done here, while others distinguish between mild, moderate, and severe cases. Viral load does not indicate degree of symptoms — for example patients may have a high viral load while being asymptomatic. With regard to treatments that have antiviral properties, timing

of treatment is critical — late administration may be less helpful regardless of severity.

Details of treatment delay per patient is often not available. For example, a study may treat 90% of patients relatively early, but the events driving the outcome may come from 10% of patients treated very late. Our 5 day cutoff for early treatment may be too conservative, 5 days may be too late in many cases.

Comparison across treatments is confounded by differences in the studies performed, for example dose, variants, and conflicts of interest. Trials with conflicts of interest may use designs better suited to the preferred outcome.

In some cases, the most serious outcome has very few events, resulting in lower confidence results being used in pooled analysis, however the method is simpler and more transparent. This is less critical as the number of studies increases. Restriction to outcomes with sufficient power may be beneficial in pooled analysis and improve accuracy when there are few studies, however we maintain our pre-specified method to avoid any retrospective changes.

Studies show that combinations of treatments can be highly synergistic and may result in many times greater efficacy than individual treatments alone ⁶⁰⁻⁷⁶. Therefore standard of care may be critical and benefits may diminish or disappear if standard of care does not include certain treatments.

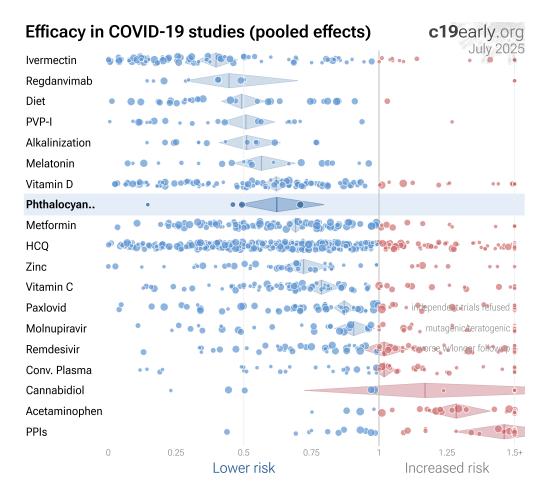
This real-time analysis is constantly updated based on submissions. Accuracy benefits from widespread review and submission of updates and corrections from reviewers. Less popular treatments may receive fewer reviews.

No treatment or intervention is 100% available and effective for all current and future variants. Efficacy may vary significantly with different variants and within different populations. All treatments have potential side effects. Propensity to experience side effects may be predicted in advance by qualified physicians. We do not provide medical advice. Before taking any medication, consult a qualified physician who can compare all options, provide personalized advice, and provide details of risks and benefits based on individual medical history and situations.

Reviews

Brito-Reia et al. present a review covering phthalocyanine for COVID-19.

Other studies


Encinar et al. also suggests potential benefits of phthalocyanine for COVID-19. We have not reviewed this paper in detail.

Perspective

Results compared with other treatments

SARS-CoV-2 infection and replication involves a complex interplay of 100+ host and viral proteins and other factors ²⁵⁻³², providing many therapeutic targets. Over 9,000 compounds have been predicted to reduce COVID-19 risk ³³, either by directly minimizing infection or replication, by supporting immune system function, or by minimizing secondary complications. Figure 23 shows an overview of the results for phthalocyanine in the context of multiple COVID-19 treatments, and Figure 24 shows a plot of efficacy vs. cost for COVID-19 treatments.

Figure 23. Scatter plot showing results within the context of multiple COVID-19 treatments. Diamonds shows the results of random effects meta-analysis. 0.6% of 9,000+ proposed treatments show efficacy ⁹¹.

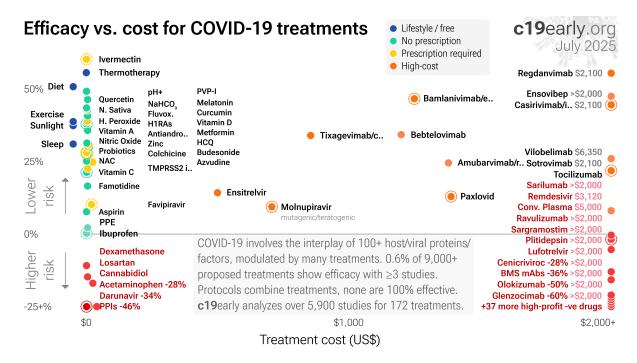
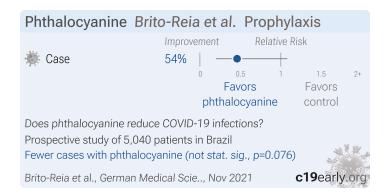


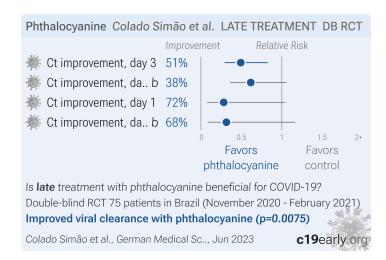
Figure 24. Efficacy vs. cost for COVID-19 treatments.

Conclusion

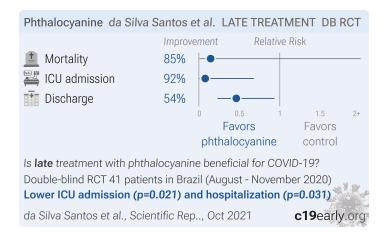

SARS-CoV-2 infection typically starts in the upper respiratory tract. Progression may lead to cytokine storm, pneumonia, ARDS, neurological issues, organ failure, and death. Stopping replication in the upper respiratory tract, via early or prophylactic nasopharyngeal/oropharyngeal treatment, can avoid the consequences of progression to other tissues, and avoid the requirement for systemic treatments with greater potential for side effects.

Studies to date show that phthalocyanine is an effective treatment for COVID-19. Significantly lower risk is seen for ICU admission, hospitalization, recovery, and viral clearance. 3 studies from 3 independent teams (all from the same country) show significant benefit. Meta analysis using the most serious outcome reported shows 38% [20-51%] lower risk. Results are similar for Randomized Controlled Trials.

Phthalocyanine may affect the natural microbiome, especially with prolonged use.


Study Notes

Brito-Reia


Comparison of two similar communities in Brazil, with one using a phthalocyanine derivative mouthwash, suggesting efficacy of the treatment in lowering COVID-19 cases. There was 54% lower risk of confirmed cases during the intervention in the treatment community, compared with 15% higher and 8% lower risk before and after the intervention. Gargle/rinse with 5mL of mouthwash containing phthalocyanine derivative for 1 minute, 3 to 5 times per day.

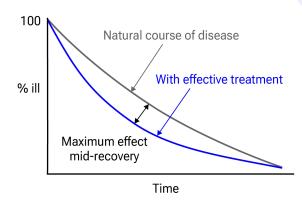
Colado Simão

RCT 75 patients in Brazil, showing significantly lower viral load with phthalocyanine mouthwash and nasal spray. The combination was more effective than mouthwash alone.

da Silva Santos

RCT 41 patients in Brazil, 20 treated with a phthalocyanine derivative mouthwash, showing shorter hosptalization and lower ICU admission with treatment. One minute gargling/rinsing 5 times per day.

Poleti


RCT 500 patients in Brazil, showing improved recovery with a phthalocyanine derivative mouthwash and toothpaste. Toothbrushing for 2 minutes, three times per day, and gargling/rising (5ml) for one minute, three times a day, for 7 days.

Appendix 1. Methods and Data

We perform ongoing searches of PubMed, medRxiv, Europe PMC, ClinicalTrials.gov, The Cochrane Library, Google Scholar, Research Square, ScienceDirect, Oxford University Press, the reference lists of other studies and meta-analyses, and submissions to the site c19early.org. Search terms are phthalocyanine and COVID-19 or SARS-CoV-2. Automated searches are performed twice daily, with all matches reviewed for inclusion. All studies regarding the use of phthalocyanine for COVID-19 that report a comparison with a control group are included in the main analysis. Studies with major unexplained data issues, for example major outcome data that is impossible to be correct with no response from the authors, are excluded. This is a living analysis and is updated regularly.

We extracted effect sizes and associated data from all studies. If studies report multiple kinds of effects then the most serious outcome is used in pooled analysis, while other outcomes are included in the outcome specific analyses. For example, if effects for mortality and cases are reported then they are both used in specific outcome analyses, while mortality is used for pooled analysis. If symptomatic results are reported at multiple times, we use the latest time, for example if mortality results are provided at 14 days and 28 days, the results at 28 days have preference. Mortality

alone is preferred over combined outcomes. Outcomes with zero events in both arms are not used, the next most serious outcome with one or more events is used. For example, in low-risk populations with no mortality, a reduction in mortality with treatment is not possible, however a reduction in hospitalization, for example, is still valuable. Clinical outcomes are considered more important than viral outcomes. When basically all patients recover in both treatment and control groups, preference for viral clearance and recovery is given to results mid-recovery where available. After most or all patients have recovered there is little or no room for an effective treatment to do better, however faster recovery is valuable. An IPD metaanalysis confirms that intermediate viral load reduction is more closely associated with hospitalization/death than later viral load reduction 92. If only individual symptom data is available, the most serious symptom has priority, for

Figure 25. Mid-recovery results can more accurately reflect efficacy when almost all patients recover. *Mateja* et *al.* confirm that intermediate viral load results more accurately reflect hospitalization/death.

example difficulty breathing or low SpO_2 is more important than cough. When results provide an odds ratio, we compute the relative risk when possible, or convert to a relative risk according to *Zhang et al.* Reported confidence intervals and *p*-values are used when available, and adjusted values are used when provided. If multiple types of adjustments are reported propensity score matching and multivariable regression has preference over propensity score matching or weighting, which has preference over multivariable regression. Adjusted results have preference over unadjusted results for a more serious outcome when the adjustments significantly alter results. When needed, conversion between reported *p*-values and confidence intervals followed *Altman*, *Altman* (*B*), and Fisher's exact test was used to calculate *p*-values for event data. If continuity correction for zero values is required, we use the reciprocal of the opposite arm with the sum of the correction factors equal to 1^{96} . Results are expressed with RR < 1.0 favoring treatment, and using the risk of a negative outcome when applicable (for example, the risk of death rather than the risk of survival). If studies only report relative continuous values such as relative times, the ratio of the time for the treatment group versus the time for the control group is used. Calculations are done in Python (3.13.5) with scipy (1.16.0), pythonmeta (1.26), numpy (2.3.1), statsmodels (0.14.4), and plotly (6.2.0).

Forest plots are computed using PythonMeta 97 with the DerSimonian and Laird random effects model (the fixed effect assumption is not plausible in this case) and inverse variance weighting. Results are presented with 95% confidence intervals. Heterogeneity among studies was assessed using the I^2 statistic. Mixed-effects meta-regression results are computed with R (4.4.0) using the metafor (4.6-0) and rms (6.8-0) packages, and using the most serious sufficiently powered outcome. For all statistical tests, a p-value less than 0.05 was considered statistically significant. Grobid 0.8.2 is used to parse PDF documents.

We have classified studies as early treatment if most patients are not already at a severe stage at the time of treatment (for example based on oxygen status or lung involvement), and treatment started within 5 days of the onset of symptoms. If studies contain a mix of early treatment and late treatment patients, we consider the treatment time of patients contributing most to the events (for example, consider a study where most patients are treated early but late treatment patients are included, and all mortality events were observed with late treatment patients). We note that a shorter time may be preferable. Antivirals are typically only considered effective when used within a shorter timeframe, for example 0-36 or 0-48 hours for oseltamivir, with longer delays not being effective ^{45,46}.

We received no funding, this research is done in our spare time. We have no affiliations with any pharmaceutical companies or political parties.

A summary of study results is below. Please submit updates and corrections at https://c19early.org/ptmeta.html.

Early treatment

Effect extraction follows pre-specified rules as detailed above and gives priority to more serious outcomes. For pooled analyses, the first (most serious) outcome is used, which may differ from the effect a paper focuses on. Other outcomes are used in outcome specific analyses.

Poleti, 12/8/2021, Double Blind Randomized Controlled Trial, Brazil, peer-reviewed, 10 authors, study period 6 November, 2020 - 19 November, 2020, trial RBR-8x8g36. risk of no recovery, 29.1% lower, RR 0.71, p = 0.02, treatment 29 of 59 (49.2%), control 52 of 75 (69.3%), NNT 5.0, day 7.

risk of no recovery, 22.1% lower, RR 0.78, p = 0.02, treatment 38 of 59 (64.4%), control 62 of 75 (82.7%), NNT 5.5, day 3.

risk of no recovery, 45.5% lower, RR 0.54, p = 0.04, treatment 12 of 59 (20.3%), control 28 of 75 (37.3%), NNT 5.9, day 7, dyspnea.

risk of no recovery, 32.5% lower, RR 0.68, p = 0.11, treatment 17 of 59 (28.8%), control 32 of 75 (42.7%), NNT 7.2, day 3, dyspnea.

Late treatment

Effect extraction follows pre-specified rules as detailed above and gives priority to more serious outcomes. For pooled analyses, the first (most serious) outcome is used, which may differ from the effect a paper focuses on. Other outcomes are used in outcome specific analyses.

Colado Simão, 6/23/2023, Double Blind Randomized Controlled Trial, placebo-controlled, Brazil, peer-reviewed, 13 authors, study period 1 November, 2020 - 1 February, 2021, average treatment delay 5.4 days. relative Ct improvement, 50.7% better, RR 0.49, p = 0.008, treatment mean 11.21 (±4.35) n=15, control mean 5.53 (±6.28) n=15, mouthwash and nasal spray, day 3.

relative Ct improvement, 38.3% better, RR 0.62, p = 0.08, treatment mean 8.96 (±4.01) n=16, control mean 5.53 (±6.28) n=15, mouthwash only, day 3.

relative Ct improvement, 71.7% better, RR 0.28, p = 0.06, treatment mean 5.48 (±5.33) n=15, control mean 1.55 (±5.54) n=15, mouthwash and nasal spray, day 1.

relative Ct improvement, 68.4% better, RR 0.32, p = 0.08, treatment mean 4.91 (±4.89) n=16, control mean 1.55 (±5.54) n=15, mouthwash only, day 1.

da Silva Santos, 10/7/2021, Double Blind Randomized Controlled Trial, Brazil, peer-reviewed, 17 authors, study period 10 August, 2020 - 4 November, 2020. risk of death, 85.4% lower, RR 0.15, p = 0.23, treatment 0 of 20 (0.0%), control 3 of 21 (14.3%), NNT 7.0, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm).

risk of ICU admission, 92.1% lower, RR 0.08, p = 0.02, treatment 0 of 20 (0.0%), control 6 of 21 (28.6%), NNT 3.5, relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm).

discharge, 53.7% lower, HR 0.46, p = 0.03, treatment 20, control 21, inverted to make HR<1 favor treatment, Cox proportional hazards.

Prophylaxis

Effect extraction follows pre-specified rules as detailed above and gives priority to more serious outcomes. For pooled analyses, the first (most serious) outcome is used, which may differ from the effect a paper focuses on. Other outcomes are used in outcome specific analyses.

Brito-Reia (B), 11/15/2021, prospective, Brazil, peer-reviewed, 7 authors, trial RBR-6c9xnw3.

risk of case, 54.0% lower, RR 0.46, p = 0.08, treatment 6 of 1,153 (0.5%), control 44 of 3,887 (1.1%), NNT 164.

Supplementary Data

Supplementary Data

Footnotes

a. Viral infection and replication involves attachment, entry, uncoating and release, genome replication and transcription, translation and protein processing, assembly and budding, and release. Each step can be disrupted by therapeutics.

References

- Ryu et al., Fibrin drives thromboinflammation and neuropathology in COVID-19, Nature, doi:10.1038/s41586-024-07873-4.
- Dai et al., Neurological complications of COVID-19, QJM: An International Journal of Medicine, doi:10.1093/qjmed/hcac272.
- Rong et al., Persistence of spike protein at the skull-meningesbrain axis may contribute to the neurological sequelae of COVID-19, Cell Host & Microbe, doi:10.1016/j.chom.2024.11.007.
- 4. **Yang** et al., SARS-CoV-2 infection causes dopaminergic neuron senescence, Cell Stem Cell, doi:10.1016/j.stem.2023.12.012.
- Scardua-Silva et al., Microstructural brain abnormalities, fatigue, and cognitive dysfunction after mild COVID-19, Scientific Reports, doi:10.1038/s41598-024-52005-7.
- Hampshire et al., Cognition and Memory after Covid-19 in a Large Community Sample, New England Journal of Medicine, doi:10.1056/NEJMoa2311330.
- Duloquin et al., Is COVID-19 Infection a Multiorganic Disease? Focus on Extrapulmonary Involvement of SARS-CoV-2, Journal of Clinical Medicine, doi:10.3390/jcm13051397.
- Sodagar et al., Pathological Features and Neuroinflammatory Mechanisms of SARS-CoV-2 in the Brain and Potential Therapeutic Approaches, Biomolecules, doi:10.3390/biom12070971.
- Sagar et al., COVID-19-associated cerebral microbleeds in the general population, Brain Communications, doi:10.1093/braincomms/fcae127.
- Verma et al., Persistent Neurological Deficits in Mouse PASC Reveal Antiviral Drug Limitations, bioRxiv, doi:10.1101/2024.06.02.596989.
- Panagea et al., Neurocognitive Impairment in Long COVID: A Systematic Review, Archives of Clinical Neuropsychology, doi:10.1093/arclin/acae042.
- 12. **Ariza** et al., COVID-19: Unveiling the Neuropsychiatric Maze From Acute to Long-Term Manifestations, Biomedicines, doi:10.3390/biomedicines12061147.
- Vashisht et al., Neurological Complications of COVID-19: Unraveling the Pathophysiological Underpinnings and Therapeutic Implications, Viruses, doi:10.3390/v16081183.

- Ahmad et al., Neurological Complications and Outcomes in Critically III Patients With COVID-19: Results From International Neurological Study Group From the COVID-19 Critical Care Consortium, The Neurohospitalist, doi:10.1177/19418744241292487.
- Wang et al., SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction, Translational Neurodegeneration, doi:10.1186/s40035-024-00458-1.
- Eberhardt et al., SARS-CoV-2 infection triggers proatherogenic inflammatory responses in human coronary vessels, Nature Cardiovascular Research, doi:10.1038/s44161-023-00336-5.
- Van Tin et al., Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis through NLRP3 Inflammasomes and NF-κB Signaling, Cells, doi:10.3390/cells13161331.
- Borka Balas et al., COVID-19 and Cardiac Implications Still a Mystery in Clinical Practice, Reviews in Cardiovascular Medicine, doi:10.31083/j.rcm2405125.
- AlTaweel et al., An In-Depth Insight into Clinical, Cellular and Molecular Factors in COVID19-Associated Cardiovascular Ailments for Identifying Novel Disease Biomarkers, Drug Targets and Clinical Management Strategies, Archives of Microbiology & Immunology, doi:10.26502/ami.936500177.
- Saha et al., COVID-19 beyond the lungs: Unraveling its vascular impact and cardiovascular complications mechanisms and therapeutic implications, Science Progress, doi:10.1177/00368504251322069.
- 21. **Trender** et al., Changes in memory and cognition during the SARS-CoV-2 human challenge study, eClinicalMedicine, doi:10.1016/j.eclinm.2024.102842.
- 22. **Wu** et al., SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming, Cell, doi:10.1016/j.cell.2022.11.030.
- 23. **Demarco**, S., Shadowing SARS-CoV-2 Through Mucus and Cilia, DDN, viewonline.drugdiscoverynews.com/hubfs/DDN%20Milestones/ Shadowing%20SARS-CoV-2%20Through%20Mucus%20and%2 0Cilia.pdf.
- Lee et al., ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs, Nature Communications, doi:10.1038/s41467-020-19145-6.

- Dugied et al., Multimodal SARS-CoV-2 interactome sketches the virus-host spatial organization, Communications Biology, doi:10.1038/s42003-025-07933-z.
- Malone et al., Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design, Nature Reviews Molecular Cell Biology, doi:10.1038/s41580-021-00432-z.
- Murigneux et al., Proteomic analysis of SARS-CoV-2 particles unveils a key role of G3BP proteins in viral assembly, Nature Communications, doi:10.1038/s41467-024-44958-0.
- 28. Lv et al., Host proviral and antiviral factors for SARS-CoV-2, Virus Genes, doi:10.1007/s11262-021-01869-2.
- 29. **Lui** et al., Nsp1 facilitates SARS-CoV-2 replication through calcineurin-NFAT signaling, Virology, doi:10.1128/mbio.00392-24.
- Niarakis et al., Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches, Frontiers in Immunology, doi:10.3389/fimmu.2023.1282859.
- 31. **Katiyar** et al., SARS-CoV-2 Assembly: Gaining Infectivity and Beyond, Viruses, doi:10.3390/v16111648.
- 32. **Wu (B)** et al., Decoding the genome of SARS-CoV-2: a pathway to drug development through translation inhibition, RNA Biology, doi:10.1080/15476286.2024.2433830.
- 33. c19early.org, c19early.org/treatments.html.
- Jadad et al., Randomized Controlled Trials: Questions, Answers, and Musings, Second Edition, doi:10.1002/9780470691922.
- 35. **Gøtzsche**, P., Bias in double-blind trials, Doctoral Thesis, University of Copenhagen, www.scientificfreedom.dk/2023/05/16/bias-in-double-blind-trial s-doctoral-thesis/.
- Als-Nielsen et al., Association of Funding and Conclusions in Randomized Drug Trials, JAMA, doi:10.1001/jama.290.7.921.
- 37. c19early.org (B), c19early.org/ptsupp.html#fig_rctobs.
- 38. **Concato** et al., NEJM, 342:1887-1892, doi:10.1056/NEJM200006223422507.
- Anglemyer et al., Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials, Cochrane Database of Systematic Reviews 2014, Issue 4, doi:10.1002/14651858.MR000034.pub2.
- 40. c19early.org (C), c19early.org/rctobs.html.
- Lee (B) et al., Analysis of Overall Level of Evidence Behind Infectious Diseases Society of America Practice Guidelines, Arch Intern Med., 2011, 171:1, 18-22, doi:10.1001/archinternmed.2010.482.
- 42. **Deaton** et al., Understanding and misunderstanding randomized controlled trials, Social Science & Medicine, 210, doi:10.1016/j.socscimed.2017.12.005.
- Nichol et al., Challenging issues in randomised controlled trials, Injury, 2010, doi: 10.1016/j.injury.2010.03.033, www.injuryjournal.com/article/S0020-1383(10)00233-0/fulltex t.

- 44. **Akash** et al., On a model-based approach to improve intranasal spray targeting for respiratory viral infections, Frontiers in Drug Delivery, doi:10.3389/fddev.2023.1164671.
- Treanor et al., Efficacy and Safety of the Oral Neuraminidase Inhibitor Oseltamivir in Treating Acute Influenza: A Randomized Controlled Trial, JAMA, 2000, 283:8, 1016-1024, doi:10.1001/jama.283.8.1016.
- McLean et al., Impact of Late Oseltamivir Treatment on Influenza Symptoms in the Outpatient Setting: Results of a Randomized Trial, Open Forum Infect. Dis. September 2015, 2:3, doi:10.1093/ofid/ofv100.
- Ikematsu et al., Baloxavir Marboxil for Prophylaxis against Influenza in Household Contacts, New England Journal of Medicine, doi:10.1056/NEJMoa1915341.
- 48. **Hayden** et al., Baloxavir Marboxil for Uncomplicated Influenza in Adults and Adolescents, New England Journal of Medicine, doi:10.1056/NEJMoa1716197.
- 49. Kumar et al., Combining baloxavir marboxil with standard-ofcare neuraminidase inhibitor in patients hospitalised with severe influenza (FLAGSTONE): a randomised, parallel-group, double-blind, placebo-controlled, superiority trial, The Lancet Infectious Diseases, doi:10.1016/S1473-3099(21)00469-2.
- López-Medina et al., Effect of Ivermectin on Time to Resolution of Symptoms Among Adults With Mild COVID-19: A Randomized Clinical Trial, JAMA, doi:10.1001/jama.2021.3071.
- 51. **Korves** et al., SARS-CoV-2 Genetic Variants and Patient Factors Associated with Hospitalization Risk, medRxiv, doi:10.1101/2024.03.08.24303818.
- 52. **Faria** et al., Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil, Science, doi:10.1126/science.abh2644.
- 53. Nonaka et al., SARS-CoV-2 variant of concern P.1 (Gamma) infection in young and middle-aged patients admitted to the intensive care units of a single hospital in Salvador, Northeast Brazil, February 2021, International Journal of Infectious Diseases, doi:10.1016/j.ijid.2021.08.003.
- 54. **Karita** et al., Trajectory of viral load in a prospective population-based cohort with incident SARS-CoV-2 G614 infection, medRxiv, doi:10.1101/2021.08.27.21262754.
- 55. Zavascki et al., Advanced ventilatory support and mortality in hospitalized patients with COVID-19 caused by Gamma (P.1) variant of concern compared to other lineages: cohort study at a reference center in Brazil, Research Square, doi:10.21203/rs.3.rs-910467/v1.
- 56. Willett et al., The hyper-transmissible SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine escape and a switch in cell entry mechanism, medRxiv, doi:10.1101/2022.01.03.21268111.
- 57. **Peacock** et al., The SARS-CoV-2 variant, Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the endosomal route of entry, bioRxiv, doi:10.1101/2021.12.31.474653.
- 58. **Williams**, T., Not All Ivermectin Is Created Equal: Comparing The Quality of 11 Different Ivermectin Sources, Do Your Own Research,

- doyourownresearch.substack.com/p/not-all-ivermectin-is-create d-equal.
- 59. Xu et al., A study of impurities in the repurposed COVID-19 drug hydroxychloroquine sulfate by UHPLC-Q/TOF-MS and LC-SPE-NMR, Rapid Communications in Mass Spectrometry, doi:10.1002/rcm.9358.
- 60. **Jitobaom** et al., Favipiravir and Ivermectin Showed in Vitro Synergistic Antiviral Activity against SARS-CoV-2, Research Square, doi:10.21203/rs.3.rs-941811/v1.
- Jitobaom (B) et al., Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations, BMC Pharmacology and Toxicology, doi:10.1186/s40360-022-00580-8.
- 62. **Jeffreys** et al., Remdesivir-ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2, International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2022.106542.
- 63. **Ostrov** et al., Highly Specific Sigma Receptor Ligands Exhibit Anti-Viral Properties in SARS-CoV-2 Infected Cells, Pathogens, doi:10.3390/pathogens10111514.
- Alsaidi et al., Griffithsin and Carrageenan Combination Results in Antiviral Synergy against SARS-CoV-1 and 2 in a Pseudoviral Model, Marine Drugs, doi:10.3390/md19080418.
- 65. **Andreani** et al., In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect, Microbial Pathogenesis, doi:10.1016/j.micpath.2020.104228.
- 66. De Forni et al., Synergistic drug combinations designed to fully suppress SARS-CoV-2 in the lung of COVID-19 patients, PLoS ONE, doi:10.1371/journal.pone.0276751.
- 67. **Wan** et al., Synergistic inhibition effects of andrographolide and baicalin on coronavirus mechanisms by downregulation of ACE2 protein level, Scientific Reports, doi:10.1038/s41598-024-54722-5.
- 68. Said et al., The effect of Nigella sativa and vitamin D3 supplementation on the clinical outcome in COVID-19 patients: A randomized controlled clinical trial, Frontiers in Pharmacology, doi:10.3389/fphar.2022.1011522.
- Fiaschi et al., In Vitro Combinatorial Activity of Direct Acting Antivirals and Monoclonal Antibodies against the Ancestral B.1 and BQ.1.1 SARS-CoV-2 Viral Variants, Viruses, doi:10.3390/v16020168.
- 70. **Xing** et al., Published anti-SARS-CoV-2 in vitro hits share common mechanisms of action that synergize with antivirals, Briefings in Bioinformatics, doi:10.1093/bib/bbab249.
- 71. **Chen** et al., Synergistic Inhibition of SARS-CoV-2 Replication Using Disulfiram/Ebselen and Remdesivir, ACS Pharmacology & Translational Science, doi:10.1021/acsptsci.1c00022.
- Hempel et al., Synergistic inhibition of SARS-CoV-2 cell entry by otamixaban and covalent protease inhibitors: pre-clinical assessment of pharmacological and molecular properties, Chemical Science, doi:10.1039/D1SC01494C.
- 73. **Schultz** et al., Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2, Nature, doi:10.1038/s41586-022-04482-x.

- Ohashi et al., Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment, iScience, doi:10.1016/j.isci.2021.102367.
- 75. **Al Krad** et al., The protease inhibitor Nirmatrelvir synergizes with inhibitors of GRP78 to suppress SARS-CoV-2 replication, bioRxiv, doi:10.1101/2025.03.09.642200.
- 76. Thairu et al., A Comparison of Ivermectin and Non Ivermectin Based Regimen for COVID-19 in Abuja: Effects on Virus Clearance, Days-to-discharge and Mortality, Journal of Pharmaceutical Research International, doi:10.9734/jpri/2022/v34i44A36328.
- 77. **Singh** et al., The relationship between viral clearance rates and disease progression in early symptomatic COVID-19: a systematic review and meta-regression analysis, Journal of Antimicrobial Chemotherapy, doi:10.1093/jac/dkae045.
- Tarragó-Gil et al., Randomized clinical trial to assess the impact of oral intervention with cetylpyridinium chloride to reduce salivary SARS-CoV-2 viral load, Journal of Clinical Periodontology, doi:10.1111/jcpe.13746.
- Alemany et al., Cetylpyridinium Chloride Mouthwash to Reduce Shedding of Infectious SARS-CoV-2: A Double-Blind Randomized Clinical Trial, Journal of Dental Research, doi:10.1177/00220345221102310.
- 80. **Brookes** et al., Mouthwash Effects on the Oral Microbiome: Are They Good, Bad, or Balanced?, International Dental Journal, doi:10.1016/j.identj.2023.08.010.
- Meneguesso, A., Médica defende tratamento precoce da Covid-19, www.youtube.com/watch?v=X5FCrIm_19U.
- 82. **Boulware**, D., Comments regarding paper rejection, twitter.com/boulware_dr/status/1311331372884205570.
- 83. **Meeus**, G., Online Comment, twitter.com/gertmeeus_MD/status/1386636373889781761.
- 84. twitter.com, twitter.com/KashPrime/status/1768487878454124914.
- 85. **Brito-Reia** et al., Antiviral Mechanism and Clinical Benefits of Mouthwash Active Against SARS-CoV-2, Current Oral Health Reports, doi:10.1007/s40496-024-00368-1.
- 86. Poleti et al., Use of mouthwash and dentifrice containing antimicrobial phthalocyanine derivative for the reduction of clinical symptoms of COVID-19: A randomized triple-blinded clinical trial, Journal of Evidence-Based Dental Practice, doi:10.1016/j.jebdp.2022.101777.
- 87. **Colado Simão** et al., Effect of phthalocyanine oral and nasal antiseptic solutions on the infectivity of SARS-CoV-2 in patients with COVID-19: a randomized controlled trial, German Medical Science GMS Publishing House, doi:10.3205/000321.
- 88. **da Silva Santos** et al., Beneficial effects of a mouthwash containing an antiviral phthalocyanine derivative on the length of hospital stay for COVID-19: randomised trial, Scientific Reports, doi:10.1038/s41598-021-99013-5.
- 89. **Brito-Reia (B)** et al., Population-based virucidal phthalocyanine gargling/rinsing protocol to reduce the risk of coronavirus disease-2019: a community trial, German Medical Science GMS Publishing House, doi:10.3205/dgkh000426.

- 90. **Encinar** et al., Potential Drugs Targeting Early Innate Immune Evasion of SARS-Coronavirus 2 via 2'-O-Methylation of Viral RNA, Viruses, doi:10.3390/v12050525.
- 91. c19early.org (D), c19early.org/timeline.html.
- 92. **Mateja** et al., The choice of viral load endpoint in early phase trials of COVID-19 treatments aiming to reduce 28-day hospitalization and/or death, The Journal of Infectious Diseases, doi:10.1093/infdis/jiaf282.
- 93. **Zhang** et al., What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes, JAMA, 80:19, 1690, doi:10.1001/jama.280.19.1690.

- 94. **Altman**, D., How to obtain the P value from a confidence interval, BMJ, doi:10.1136/bmj.d2304.
- 95. **Altman (B)** et al., How to obtain the confidence interval from a P value, BMJ, doi:10.1136/bmj.d2090.
- 96. **Sweeting** et al., What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data, Statistics in Medicine, doi:10.1002/sim.1761.
- 97. **Deng**, H., PyMeta, Python module for meta-analysis, www.pymeta.com/.

