Hydrogen Peroxide for COVID-19: real-time meta analysis of 7 studies

@CovidAnalysis, November 2023
https://c19early.org/hpmeta.html

• Statistically significant lower risk is seen for viral clearance. 2 studies from 2 independent teams in 2 countries show statistically significant improvements.

• Meta analysis using the most serious outcome reported shows 38% [4-59%] lower risk. Results are better for Randomized Controlled Trials and higher quality studies and slightly worse for peer-reviewed studies.

• Currently there is limited data, with only 835 patients and only 26 control events for the most serious outcome in trials to date.

• 4 RCTs with 323 patients have not reported results (up to 2 years late).

• No treatment or intervention is 100% effective. All practical, effective, and safe means should be used based on risk/benefit analysis. Multiple treatments are typically used in combination, and other treatments may be more effective. Hydrogen Peroxide may also harm beneficial microbes raising concern of side effects, especially with longer-term use.

• All data to reproduce this paper and sources are in the appendix.

Hydrogen Peroxide for COVID-19

Evolution of COVID-19 clinical evidence

HIGHLIGHTS

Hydrogen Peroxide reduces risk for COVID-19 with very high confidence for viral clearance, high confidence for pooled analysis, low confidence for mortality, ventilation, and cases, and very low confidence for recovery.

We show traditional outcome specific analyses and combined evidence from all studies, incorporating treatment delay, a primary confounding factor in COVID-19 studies.

Real-time updates and corrections, transparent analysis with all results in the same format, consistent protocol for 57 treatments.
Efficacy in COVID-19 hydrogen peroxide studies (pooled effects)

Improvement, RR [CI]

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mukhtar (RCT)</td>
<td>86%</td>
<td>0/46</td>
</tr>
<tr>
<td>Jaaraman</td>
<td>59%</td>
<td>3/6</td>
</tr>
<tr>
<td>Jacox (DB RCT)</td>
<td>not reported, >2 years late</td>
<td>129 (total)</td>
</tr>
<tr>
<td>Pablo-Maros</td>
<td>12%</td>
<td>17 (n)</td>
</tr>
<tr>
<td>Xie (DB RCT)</td>
<td>not reported, >1.5 years late</td>
<td>90 (est. total)</td>
</tr>
<tr>
<td>Khan (DB RCT)</td>
<td>not reported, >1 year late</td>
<td>50 (est. total)</td>
</tr>
<tr>
<td>Gansky (DB RCT)</td>
<td>not reported, >1 year late</td>
<td>54 (total)</td>
</tr>
</tbody>
</table>

Early treatment
- 34% [0.38-1.14]
- Improvement: 3/69, Control: 9/92
- 34% lower risk

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di Domê.. (DB RCT)</td>
<td>50%</td>
<td>1/20</td>
</tr>
<tr>
<td>Di Domê.. (DB RCT)</td>
<td>34%</td>
<td>2/77</td>
</tr>
<tr>
<td>Agrawal (DB RCT)</td>
<td>67%</td>
<td>1/20</td>
</tr>
<tr>
<td>Agrawal (DB RCT)</td>
<td>49%</td>
<td>4/117</td>
</tr>
<tr>
<td>Agrawal (DB RCT)</td>
<td>0.49 [0.14-1.68]</td>
<td>7/91</td>
</tr>
</tbody>
</table>

Late treatment
- 51% [0.14-1.68]
- Improvement: 4/117, Control: 7/91
- 51% lower risk

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoah</td>
<td>93%</td>
<td>0/94</td>
</tr>
</tbody>
</table>

Prophylaxis
- 93% [0.00-1.25]
- Improvement: 0/94, Control: 10/372
- 93% lower risk

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>All studies</td>
<td>38%</td>
<td>7/280</td>
</tr>
<tr>
<td></td>
<td>0.62 [0.41-0.96]</td>
<td>26/555</td>
</tr>
</tbody>
</table>

All studies
- 38% [0.41-0.96]
- Improvement: 7/280, Control: 26/555
- 38% lower risk

Effect extraction pre-specified

- Most serious outcome: death
- Favors hydrogen peroxide
- Favors control
- November 2023

Favors hydrogen peroxide

Favors control

November 2023

Early treatment

Late treatment

Prophylaxis

All studies

Efficacy in COVID-19 hydrogen peroxide studies (pooled effects)

November 2023

Efficacy in COVID-19 hydrogen peroxide studies (pooled effects)
Figure 1. A. Random effects meta-analysis. This plot shows pooled effects, see the specific outcome analyses for individual outcomes, and the heterogeneity section for discussion. Effect extraction is pre-specified, using the most serious outcome reported. For details of effect extraction see the appendix. B. Scatter plot showing the most serious outcome in all studies, and for studies within each stage. Diamonds shows the results of random effects meta-analysis. C. Results within the context of multiple COVID-19 treatments. 0.7% of 5,722 proposed treatments show efficacy. D. Timeline of results in hydrogen peroxide studies. The marked dates indicate the time when efficacy was known with a statistically significant improvement of ≥10% from ≥3 studies for pooled outcomes and one or more specific outcome. Efficacy based on specific outcomes was delayed by 5.8 months, compared to using pooled outcomes.
Introduction

SARS-CoV-2 infection typically starts in the upper respiratory tract, and specifically the nasal respiratory epithelium. Entry via the eyes and gastrointestinal tract is possible, but less common, and entry via other routes is rare. Infection may progress to the lower respiratory tract, other tissues, and the nervous system. The primary initial route for entry into the central nervous system is thought to be the olfactory nerve in the nasal cavity. Progression may lead to cytokine storm, pneumonia, ARDS, neurological issues, organ failure, and death. Logically, stopping replication in the upper respiratory tract should be simpler and more effective. Early or prophylactic nasopharyngeal/oropharyngeal treatment can avoid the consequences of viral replication in other tissues, and avoid the requirement for systemic treatments with greater potential for side effects.

We analyze all significant studies concerning the use of hydrogen peroxide for COVID-19. Search methods, inclusion criteria, effect extraction criteria (more serious outcomes have priority), all individual study data, PRISMA answers, and statistical methods are detailed in Appendix 1. We present random effects meta-analysis results for all studies, studies within each treatment stage, individual outcomes, peer-reviewed studies, Randomized Controlled Trials (RCTs), and after exclusions.

Figure 2 shows stages of possible treatment for COVID-19. Prophylaxis refers to regularly taking medication before becoming sick, in order to prevent or minimize infection. Early Treatment refers to treatment immediately or soon after symptoms appear, while Late Treatment refers to more delayed treatment.

Results

Table 1 summarizes the results for all stages combined, with different exclusions, and for specific outcomes. Table 2 shows results by treatment stage. Figure 3, 4, 5, 6, 7, 8, 9, and 10 show forest plots for random effects meta-analysis of all studies with pooled effects, mortality results, ventilation, ICU admission, recovery, cases, viral clearance, and peer reviewed studies.
Table 1. Random effects meta-analysis for all stages combined, with different exclusions, and for specific outcomes. Results show the percentage improvement with treatment and the 95% confidence interval.

<table>
<thead>
<tr>
<th></th>
<th>Improvement</th>
<th>Studies</th>
<th>Patients</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>All studies</td>
<td>38% (4-59%) *</td>
<td>7</td>
<td>835</td>
<td>71</td>
</tr>
<tr>
<td>After exclusions</td>
<td>57% (20-77%) **</td>
<td>6</td>
<td>778</td>
<td>65</td>
</tr>
<tr>
<td>Peer-reviewed studies</td>
<td>28% (-22-57%) **</td>
<td>5</td>
<td>731</td>
<td>44</td>
</tr>
<tr>
<td>Randomized Controlled Trials</td>
<td>59% (-27-87%) **</td>
<td>4</td>
<td>300</td>
<td>41</td>
</tr>
<tr>
<td>Mortality</td>
<td>75% [-42-96%] **</td>
<td>2</td>
<td>132</td>
<td>23</td>
</tr>
<tr>
<td>Ventilation</td>
<td>75% [-42-96%] **</td>
<td>2</td>
<td>132</td>
<td>23</td>
</tr>
<tr>
<td>ICU admission</td>
<td>41% [-160-87%] **</td>
<td>2</td>
<td>168</td>
<td>18</td>
</tr>
<tr>
<td>Recovery</td>
<td>19% [-10-41%]</td>
<td>3</td>
<td>177</td>
<td>26</td>
</tr>
<tr>
<td>Viral</td>
<td>33% (11-50%) **</td>
<td>4</td>
<td>192</td>
<td>41</td>
</tr>
<tr>
<td>RCT mortality</td>
<td>75% [-42-96%] **</td>
<td>2</td>
<td>132</td>
<td>23</td>
</tr>
</tbody>
</table>

Table 2. Random effects meta-analysis results by treatment stage. Results show the percentage improvement with treatment, the 95% confidence interval, and the number of studies for the stage.

<table>
<thead>
<tr>
<th></th>
<th>Early treatment</th>
<th>Late treatment</th>
<th>Prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>All studies</td>
<td>34% [-14-62%]</td>
<td>51% [-68-86%]</td>
<td>93% [-25-100%]</td>
</tr>
<tr>
<td>After exclusions</td>
<td>54% [3-78%] *</td>
<td>51% [-68-86%]</td>
<td>93% [-25-100%]</td>
</tr>
<tr>
<td>Peer-reviewed studies</td>
<td>12% [-58-52%] **</td>
<td>51% [-68-86%]</td>
<td>93% [-25-100%]</td>
</tr>
<tr>
<td>Randomized Controlled Trials</td>
<td>86% [-169-99%]</td>
<td>51% [-68-86%]</td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>86% [-169-99%]</td>
<td>67% [-194-96%]</td>
<td></td>
</tr>
<tr>
<td>Ventilation</td>
<td>86% [-169-99%]</td>
<td>67% [-194-96%]</td>
<td></td>
</tr>
<tr>
<td>ICU admission</td>
<td>41% [-160-87%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery</td>
<td>19% [-10-41%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viral</td>
<td>21% [0-37%] *</td>
<td>45% [33-55%]**</td>
<td></td>
</tr>
<tr>
<td>RCT mortality</td>
<td>86% [-169-99%]</td>
<td>67% [-194-96%]</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3. Random effects meta-analysis for all studies with pooled effects. This plot shows pooled effects, see the specific outcome analyses for individual outcomes, and the heterogeneity section for discussion. Effect extraction is pre-specified, using the most serious outcome reported. For details of effect extraction see the appendix.

Early treatment

<table>
<thead>
<tr>
<th>Study</th>
<th>Improvement, RR [CI]</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mukhtar (RCT)</td>
<td>86% 0.14 [0.01-2.69]</td>
<td>0/46</td>
<td>3/46</td>
</tr>
<tr>
<td>Jayaraman</td>
<td>50% 0.50 [0.23-1.08]</td>
<td>36/6</td>
<td>6/6</td>
</tr>
<tr>
<td>JacoX (DB RCT)</td>
<td>not reported, >3 years late</td>
<td>129 (total)</td>
<td></td>
</tr>
<tr>
<td>Pablo-Marcos</td>
<td>12% 0.88 [0.48-1.58]</td>
<td>17 (n)</td>
<td>40 (n)</td>
</tr>
<tr>
<td>Xie (DB RCT)</td>
<td>not reported, >1.5 years late</td>
<td>90 (est. total)</td>
<td></td>
</tr>
<tr>
<td>Khan (DB RCT)</td>
<td>not reported, >1 year late</td>
<td>50 (est. total)</td>
<td></td>
</tr>
<tr>
<td>Gansky (DB RCT)</td>
<td>not reported, >1 year late</td>
<td>54 (total)</td>
<td></td>
</tr>
</tbody>
</table>

Early treatment 34% 0.66 [0.38-1.14] 3/69 9/92 34% lower risk

Late treatment

<table>
<thead>
<tr>
<th>Study</th>
<th>Improvement, RR [CI]</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di Domê. (DB RCT)</td>
<td>50% 0.50 [0.05-8.08]</td>
<td>1/20</td>
<td>2/20</td>
</tr>
<tr>
<td>Di Domê. (DB RCT)</td>
<td>34% 0.66 [0.10-4.55]</td>
<td>2/77</td>
<td>2/51</td>
</tr>
<tr>
<td>Agrawal (DB RCT)</td>
<td>67% 0.33 [0.04-2.94]</td>
<td>1/20</td>
<td>3/20</td>
</tr>
</tbody>
</table>

Late treatment 51% 0.49 [0.14-1.68] 4/117 7/91 51% lower risk

Prophylaxis

<table>
<thead>
<tr>
<th>Study</th>
<th>Improvement, RR [CI]</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoah</td>
<td>90% 0.07 [0.00-1.25]</td>
<td>0/94</td>
<td>10/372</td>
</tr>
</tbody>
</table>

Prophylaxis 93% 0.07 [0.00-1.25] 0/94 10/372 93% lower risk

All studies

<table>
<thead>
<tr>
<th>Improvement, RR [CI]</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>86% 0.14 [0.01-2.69]</td>
<td>0/46</td>
<td>3/46</td>
</tr>
<tr>
<td>50% 0.50 [0.23-1.08]</td>
<td>36/6</td>
<td>6/6</td>
</tr>
<tr>
<td>not reported, >3 years late</td>
<td>129 (total)</td>
<td></td>
</tr>
<tr>
<td>12% 0.88 [0.48-1.58]</td>
<td>17 (n)</td>
<td>40 (n)</td>
</tr>
<tr>
<td>not reported, >1.5 years late</td>
<td>90 (est. total)</td>
<td></td>
</tr>
<tr>
<td>not reported, >1 year late</td>
<td>50 (est. total)</td>
<td></td>
</tr>
<tr>
<td>not reported, >1 year late</td>
<td>54 (total)</td>
<td></td>
</tr>
</tbody>
</table>

All studies 38% 0.62 [0.41-0.96] 7/280 26/555 38% lower risk

Figure 4. Random effects meta-analysis for mortality results.

Early treatment

<table>
<thead>
<tr>
<th>Study</th>
<th>Improvement, RR [CI]</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mukhtar (RCT)</td>
<td>86% 0.14 [0.01-2.69]</td>
<td>0/46</td>
<td>3/46</td>
</tr>
</tbody>
</table>

Early treatment 86% 0.14 [0.01-2.69] 0/46 3/46 86% lower risk

Late treatment

<table>
<thead>
<tr>
<th>Study</th>
<th>Improvement, RR [CI]</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrawal (DB RCT)</td>
<td>67% 0.33 [0.04-2.94]</td>
<td>1/20</td>
<td>3/20</td>
</tr>
</tbody>
</table>

Late treatment 67% 0.33 [0.04-2.94] 1/20 3/20 67% lower risk

All studies

<table>
<thead>
<tr>
<th>Improvement, RR [CI]</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>75% 0.25 [0.04-1.42]</td>
<td>1/66</td>
<td>6/66</td>
</tr>
</tbody>
</table>

All studies 75% 0.25 [0.04-1.42] 1/66 6/66 75% lower risk

1 CT: study uses combined treatment

\[\tau^2 = 0.00, I^2 = 0.00, p = 0.14 \]
2 hydrogen peroxide COVID-19 mechanical ventilation results

- **Early treatment**
 - Mukhtar (RCT)
 - Improvement, RR (CI): 86% 0.14 [0.01-2.69]
 - Treatment: 0/46
 - Control: 3/46
 - Tau² = 0.00, I² = 0.0%, p = 0.2
- **Late treatment**
 - Agrawal (DB RCT)
 - Improvement, RR (CI): 67% 0.33 [0.04-2.94]
 - Treatment: 1/20
 - Control: 3/20
 - Tau² = 0.00, I² = 0.0%, p = 0.33

All studies
- Improvement, RR (CI): 75% 0.25 [0.04-1.42]
- Treatment: 1/66
- Control: 6/66
- Tau² = 0.00, I² = 0.0%, p = 0.12

Figure 5. Random effects meta-analysis for ventilation.

2 hydrogen peroxide COVID-19 ICU results

- **Di Domê... (DB RCT)**
 - Improvement, RR (CI): 50% 0.50 [0.05-5.08]
 - Treatment: 1/20
 - Control: 2/20
 - Tau² = 0.00, I² = 0.0%, p = 0.5
- **Late treatment**
 - Improvement, RR (CI): 41% 0.59 [0.13-2.60]
 - Treatment: 3/97
 - Control: 4/71
 - Tau² = 0.00, I² = 0.0%, p = 0.5

All studies
- Improvement, RR (CI): 41% 0.59 [0.13-2.60]
- Treatment: 3/97
- Control: 4/71
- Tau² = 0.00, I² = 0.0%, p = 0.5

Figure 6. Random effects meta-analysis for ICU admission.

3 hydrogen peroxide COVID-19 recovery results

- **Di Domê... (DB RCT)**
 - Improvement, RR (CI): 7% 0.93 [0.71-1.22]
 - Treatment: 18 (n)
 - Control: 17 (n)
- **Agrawal (DB RCT)**
 - Improvement, RR (CI): 36% 0.64 [0.55-0.75]
 - Treatment: 19 (n)
 - Control: 17 (n)
- **Late treatment**
 - Improvement, RR (CI): 19% 0.81 [0.59-1.10]
 - Treatment: 0/100
 - Control: 0/77
 - Tau² = 0.05, I² = 72.2%, p = 0.17

All studies
- Improvement, RR (CI): 19% 0.81 [0.59-1.10]
- Treatment: 0/100
- Control: 0/77
- Tau² = 0.05, I² = 72.2%, p = 0.17

Figure 7. Random effects meta-analysis for recovery.
Figure 8. Random effects meta-analysis for cases.

Figure 9. Random effects meta-analysis for viral clearance.
Figure 10. Random effects meta-analysis for peer reviewed studies. Zeraatkar analyze 356 COVID-19 trials, finding no significant evidence that preprint results are inconsistent with peer-reviewed studies. They also show extremely long peer-review delays, with a median of 6 months to journal publication. A six month delay was equivalent to around 1.5 million deaths during the first two years of the pandemic. Authors recommend using preprint evidence, with appropriate checks for potential falsified data, which provides higher certainty much earlier.

Randomized Controlled Trials (RCTs)

Figure 11 shows a comparison of results for RCTs and non-RCT studies. The median effect size for RCTs is 58% improvement, compared to 50% for other studies. Figure 12 and 13 show forest plots for random effects meta-analysis of all Randomized Controlled Trials and RCT mortality results. RCT results are included in Table 1 and Table 2.

RCTs have many potential biases. Bias in clinical research may be defined as something that tends to make conclusions differ systematically from the truth. RCTs help to make study groups more similar and can provide a higher level of evidence, however they are subject to many biases. For COVID-19, the overhead may delay treatment, dramatically compromising efficacy; they may encourage monotherapy for simplicity at the cost of efficacy which may rely on combined or synergistic effects; the participants that sign up may not reflect real world usage or the population that benefits most in terms of age, comorbidities, severity of illness, or other factors; standard of care may be compromised and unable to evolve quickly based on emerging research for new diseases; errors may be made in randomization and medication delivery; and investigators may have hidden agendas or vested interests influencing design, operation, analysis, and the potential for fraud. All of these biases have been observed with COVID-19 RCTs. There is no guarantee that a specific RCT provides a higher level of evidence.

RCTs for novel acute diseases requiring rapid treatment. High quality RCTs for novel acute diseases are more challenging, with increased ethical issues due to the urgency of treatment, increased risk due to enrollment delays, and more difficult design with a rapidly evolving evidence base. For COVID-19, the most common site of initial infection is the upper respiratory tract. Immediate treatment is likely to be most successful and may prevent or slow progression to other parts of the body. For a non-prophylaxis RCT, it makes sense to provide treatment in advance and instruct patients to use it immediately on symptoms, just as some governments have done by providing medication kits in advance. Unfortunately, no RCTs have been done in this way. Every treatment RCT to date involves delayed treatment. Among the 57 treatments we have analyzed, 64% of RCTs involve very late treatment 5+ days after onset.
No non-prophylaxis COVID-19 RCTs match the potential real-world use of early treatments (they may more accurately represent results for treatments that require visiting a medical facility, e.g., those requiring intravenous administration).

Non-RCT studies have been shown to be reliable. Evidence shows that non-RCT trials can also provide reliable results. Concato find that well-designed observational studies do not systematically overestimate the magnitude of the effects of treatment compared to RCTs. Anglemyer summarized reviews comparing RCTs to observational studies and found little evidence for significant differences in effect estimates. Lee shows that only 14% of the guidelines of the Infectious Diseases Society of America were based on RCTs. Evaluation of studies relies on an understanding of the study and potential biases. Limitations in an RCT can outweigh the benefits, for example excessive dosages, excessive treatment delays, or Internet survey bias could have a greater effect on results. Ethical issues may also prevent running RCTs for known effective treatments. For more on issues with RCTs see Beaton, Nichol.

Using all studies identifies efficacy 5.7+ months faster for COVID-19. Currently, 39 of the treatments we analyze show statistically significant efficacy or harm, defined as \(\geq 10\% \) decreased risk or \(>0\% \) increased risk from \(\geq 3 \) studies. Of the 39 treatments with statistically significant efficacy/harm, 24 have been confirmed in RCTs, with a mean delay of 5.7 months. For the 15 unconfirmed treatments, 4 have zero RCTs to date. The point estimates for the remaining 11 are all consistent with the overall results (benefit or harm), with 9 showing \(>20\% \). The only treatments showing \(>10\% \) efficacy for all studies, but \(<10\% \) for RCTs are sotrovimab and aspirin.

Summary. We need to evaluate each trial on its own merits. RCTs for a given medication and disease may be more reliable, however they may also be less reliable. For off-patent medications, very high conflict of interest trials may be more likely to be RCTs, and more likely to be large trials that dominate meta analyses.

Efficacy in COVID-19 hydrogen peroxide studies (pooled effects)

<table>
<thead>
<tr>
<th></th>
<th>RCTs</th>
<th>Non-RCTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favors hydrogen peroxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favors control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 11. Results for RCTs and non-RCT studies.
Figure 12. Random effects meta-analysis for all Randomized Controlled Trials. This plot shows pooled effects, see the specific outcome analyses for individual outcomes, and the heterogeneity section for discussion. Effect extraction is pre-specified, using the most serious outcome reported. For details of effect extraction see the appendix.

Figure 13. Random effects meta-analysis for RCT mortality results.

Unreported RCTs

4 hydrogen peroxide RCTs have not reported results: Gansky, Jacox, Khan, Xie. The trials report a total of 323 patients, with 2 trials having actual enrollment of 183, and the remainder estimated. The results are delayed from 1 year to over 2 years.
Exclusions

To avoid bias in the selection of studies, we analyze all non-retracted studies. Here we show the results after excluding studies with major issues likely to alter results, non-standard studies, and studies where very minimal detail is currently available. Our bias evaluation is based on analysis of each study and identifying when there is a significant chance that limitations will substantially change the outcome of the study. We believe this can be more valuable than checklist-based approaches such as Cochrane GRADE, which may underemphasize serious issues not captured in the checklists, overemphasize issues unlikely to alter outcomes in specific cases (for example, lack of blinding for an objective mortality outcome, or certain specifics of randomization with a very large effect size), or be easily influenced by potential bias. However, they can also be very high quality.

The studies excluded are as below. Figure 14 shows a forest plot for random effects meta-analysis of all studies after exclusions.

Pablo-Marcos, unadjusted results with no group details.

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment Effect</th>
<th>Control Effect</th>
<th>Tau²</th>
<th>I²</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mukhtar (RCT)</td>
<td>86%</td>
<td>0.14 [0.01-2.69]</td>
<td>death</td>
<td>0/46</td>
<td>3/46</td>
</tr>
<tr>
<td>Jayaraman</td>
<td>50%</td>
<td>0.50 [0.23-1.08]</td>
<td>viral</td>
<td>3/6</td>
<td>6/6</td>
</tr>
<tr>
<td>Early treatment</td>
<td>54%</td>
<td>0.46 [0.22-0.97]</td>
<td></td>
<td>3/52</td>
<td>9/52</td>
</tr>
<tr>
<td>Di Domè... (DB RCT)</td>
<td>50%</td>
<td>0.50 [0.05-6.08]</td>
<td>ICU</td>
<td>1/20</td>
<td>2/20</td>
</tr>
<tr>
<td>Di Domè... (DB RCT)</td>
<td>34%</td>
<td>0.66 [0.10-4.55]</td>
<td>ICU</td>
<td>2/77</td>
<td>2/51</td>
</tr>
<tr>
<td>Agrawal (DB RCT)</td>
<td>67%</td>
<td>0.33 [0.04-2.94]</td>
<td>death</td>
<td>1/20</td>
<td>3/20</td>
</tr>
<tr>
<td>Late treatment</td>
<td>51%</td>
<td>0.49 [0.14-1.68]</td>
<td></td>
<td>4/117</td>
<td>7/91</td>
</tr>
<tr>
<td>Amoah</td>
<td>93%</td>
<td>0.07 [0.00-1.25]</td>
<td>cases</td>
<td>0/94</td>
<td>10/372</td>
</tr>
<tr>
<td>Prophylaxis</td>
<td>93%</td>
<td>0.07 [0.00-1.25]</td>
<td></td>
<td>0/94</td>
<td>10/372</td>
</tr>
<tr>
<td>All studies</td>
<td>57%</td>
<td>0.43 [0.23-0.80]</td>
<td></td>
<td>7/263</td>
<td>26/515</td>
</tr>
</tbody>
</table>

1 CT: study uses combined treatment

Figure 14. Random effects meta-analysis for all studies after exclusions. This plot shows pooled effects, see the specific outcome analyses for individual outcomes, and the heterogeneity section for discussion. Effect extraction is pre-specified, using the most serious outcome reported. For details of effect extraction see the appendix.

Heterogeneity

Heterogeneity in COVID-19 studies arises from many factors including:

Treatment delay. The time between infection or the onset of symptoms and treatment may critically affect how well a treatment works. For example an antiviral may be very effective when used early but may not be effective in late stage disease, and may even be harmful. Oseltamivir, for example, is generally only considered effective for influenza when used within 0-36 or 0-48 hours. McLean, Treanor. Baloxavir studies for influenza also show that treatment delay is critical — Ikematsu report an 86% reduction in cases for post-exposure prophylaxis, Hayden show a 33 hour reduction in the time to alleviation of symptoms for treatment within 24 hours and a reduction of 13 hours for treatment within 24-48 hours, and Kumar report only 2.5 hours improvement for inpatient treatment.
Table 3. Studies of baloxavir for influenza show that early treatment is more effective.

<table>
<thead>
<tr>
<th>Treatment delay</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post exposure prophylaxis</td>
<td>86% fewer cases Ikematsu</td>
</tr>
<tr>
<td><24 hours</td>
<td>-33 hours symptoms Hayden</td>
</tr>
<tr>
<td>24-48 hours</td>
<td>-13 hours symptoms Hayden</td>
</tr>
<tr>
<td>Inpatients</td>
<td>-2.5 hours to improvement Kumar</td>
</tr>
</tbody>
</table>

Figure 15 shows a mixed-effects meta-regression for efficacy as a function of treatment delay in COVID-19 studies from 57 treatments, showing that efficacy declines rapidly with treatment delay. Early treatment is critical for COVID-19.

Figure 15. Early treatment is more effective. Meta-regression showing efficacy as a function of treatment delay in COVID-19 studies from 57 treatments.

Patient demographics. Details of the patient population including age and comorbidities may critically affect how well a treatment works. For example, many COVID-19 studies with relatively young low-comorbidity patients show all patients recovering quickly with or without treatment. In such cases, there is little room for an effective treatment to improve results (as in López-Medina).

Effect measured. Efficacy may differ significantly depending on the effect measured, for example a treatment may be very effective at reducing mortality, but less effective at minimizing cases or hospitalization. Or a treatment may have no effect on viral clearance while still being effective at reducing mortality.

Variants. There are many different variants of SARS-CoV-2 and efficacy may depend critically on the distribution of variants encountered by the patients in a study. For example, the Gamma variant shows significantly different characteristics Faria, Karita, Nonaka, Zawascki, Different mechanisms of action may be more or less effective depending on variants, for example the viral entry process for the omicron variant has moved towards TMPRSS2-independent fusion, suggesting that TMPRSS2 inhibitors may be less effective Peacock, Willett.
Regimen. Effectiveness may depend strongly on the dosage and treatment regimen.

Other treatments. The use of other treatments may significantly affect outcomes, including anything from supplements, other medications, or other kinds of treatment such as prone positioning.

Medication quality. The quality of medications may vary significantly between manufacturers and production batches, which may significantly affect efficacy and safety. Williams analyze ivermectin from 11 different sources, showing highly variable antiparasitic efficacy across different manufacturers. Xu analyze a treatment from two different manufacturers, showing 9 different impurities, with significantly different concentrations for each manufacturer.

Pooled outcome analysis. We present both pooled analyses and specific outcome analyses. Notably, pooled analysis often results in earlier detection of efficacy as shown in Figure 16. For many COVID-19 treatments, a reduction in mortality logically follows from a reduction in hospitalization, which follows from a reduction in symptomatic cases, etc. An antiviral tested with a low-risk population may report zero mortality in both arms, however a reduction in severity and improved viral clearance may translate into lower mortality among a high-risk population, and including these results in pooled analysis allows faster detection of efficacy. Trials with high-risk patients may also be restricted due to ethical concerns for treatments that are known or expected to be effective.

Pooled analysis enables using more of the available information. While there is much more information available, for example dose-response relationships, the advantage of the method used here is simplicity and transparency. Note that pooled analysis could hide efficacy, for example a treatment that is beneficial for late stage patients but has no effect on viral replication or early stage disease could show no efficacy in pooled analysis if most studies only examine viral clearance. While we present pooled results, we also present individual outcome analyses, which may be more informative for specific use cases.

Pooled outcomes identify efficacy faster. Currently, 39 of the treatments we analyze show statistically significant efficacy or harm, defined as $\geq10\%$ decreased risk or $>0\%$ increased risk from ≥3 studies. 89% of treatments showing statistically significant efficacy/harm with pooled effects have been confirmed with one or more specific outcomes, with a mean delay of 3.4 months. When restricting to RCTs only, 52% of treatments showing statistically significant efficacy/harm with pooled effects have been confirmed with one or more specific outcomes, with a mean delay of 3.6 months.
Meta analysis. The distribution of studies will alter the outcome of a meta analysis. Consider a simplified example where everything is equal except for the treatment delay, and effectiveness decreases to zero or below with increasing delay. If there are many studies using very late treatment, the outcome may be negative, even though early treatment is very effective. This may have a greater effect than pooling different outcomes such as mortality and hospitalization. For example a treatment may have 50% efficacy for mortality but only 40% for hospitalization when used within 48 hours. However efficacy could be 0% when used late.

All meta analyses combine heterogeneous studies, varying in population, variants, and potentially all factors above, and therefore may obscure efficacy by including studies where treatment is less effective. Generally, we expect the estimated effect size from meta analysis to be less than that for the optimal case. Looking at all studies is valuable for providing an overview of all research, important to avoid cherry-picking, and informative when a positive result is found despite combining less-optimal situations. However, the resulting estimate does not apply to specific cases such as early treatment in high-risk populations. While we present results for all studies, we also present treatment time and individual outcome analyses, which may be more informative for specific use cases.

Discussion

PCR viral load. Analysis of short-term changes in viral load using PCR may not detect effective treatments because PCR is unable to differentiate between intact infectious virus and non-infectious or destroyed virus particles. For example Alemany, Tarragó-Gil perform RCTs with cetylpyridinium chloride (CPC) mouthwash that show no difference in PCR viral load, however there was significantly increased detection of SARS-CoV-2 nucleocapsid protein, indicating viral lysis. CPC inactivates SARS-CoV-2 by degrading its membrane, exposing the nucleocapsid of the virus. To better estimate changes in viral load and infectivity, methods like viral culture or antigen detection that can differentiate intact vs. degraded virus are preferred.
Nasal/oral administration. Studies to date use a variety of administration methods to the respiratory tract, including nasal and oral sprays, nasal irrigation, oral rinses, and inhalation. Table 4 shows the relative efficacy for nasal, oral, and combined administration. Combined administration shows the best results, and nasal administration is more effective than oral. Precise efficacy depends on the details of administration, e.g., mucoadhesion and sprayability for sprays.

<table>
<thead>
<tr>
<th>Nasal/oral administration to the respiratory tract</th>
<th>Improvement</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral spray/rinse</td>
<td>37% [24-49%]</td>
<td>7</td>
</tr>
<tr>
<td>Nasal spray/rinse</td>
<td>54% [41-63%]</td>
<td>10</td>
</tr>
<tr>
<td>Nasal & oral</td>
<td>94% [74-99%]</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 4. Respiratory tract administration efficacy. Relative efficacy of nasal, oral, and combined nasal/oral administration for treatments administered directly to the respiratory tract, based on studies for povidone-iodine, iota-carrageenan, alkalinization, hydrogen peroxide, nitric oxide, chlorhexidine, and cetylpyridinium chloride. Results show random effects meta analysis for the most serious outcome reported for all prophylaxis and early treatment studies.

Long-term use of nasopharyngeal/oropharyngeal treatments. Nasopharyngeal/oropharyngeal treatments may not be highly selective — in addition to inhibiting or disabling SARS-CoV-2, they could also be harmful to beneficial microbes. While short-term use may reduce viral loads or the risk of infection, prolonged or overuse could disrupt the natural microbiomes in the oral cavity and nasal passages. These communities of microbes play important protective and metabolic roles.

Chlorhexidine, PVP-I, and hydrogen peroxide are broad-spectrum agents that do not discriminate between beneficial and harmful microbes — excessive use may significantly disrupt the microbiome. Cetylpyridinium chloride, a quaternary ammonium antiseptic, is less disruptive but may still alter microbial balance. Nitric oxide primarily attacks respiratory pathogens but high concentrations may also damage some commensal bacteria. Iota-carrageenan and alkalinization with sodium bicarbonate are expected to have more minimal impact on the natural microbiome.

Publication bias. Publishing is often biased towards positive results, however evidence suggests that there may be a negative bias for inexpensive treatments for COVID-19. Both negative and positive results are very important for COVID-19, media in many countries prioritizes negative results for inexpensive treatments (inverting the typical incentive for scientists that value media recognition), and there are many reports of difficulty publishing positive results. For hydrogen peroxide, there is currently not enough data to evaluate publication bias with high confidence.

One method to evaluate bias is to compare prospective vs. retrospective studies. Prospective studies are more likely to be published regardless of the result, while retrospective studies are more likely to exhibit bias. For example, researchers may perform preliminary analysis with minimal effort and the results may influence their decision to continue. Retrospective studies also provide more opportunities for the specifics of data extraction and adjustments to influence results.

Figure 17 shows a scatter plot of results for prospective and retrospective studies. The median effect size for retrospective studies is 93% improvement, compared to 50% for prospective studies, suggesting a potential bias towards publishing results showing higher efficacy.
Figure 17. Prospective vs. retrospective studies. The diamonds show the results of random effects meta-analysis.

Funnel plot analysis. Funnel plots have traditionally been used for analyzing publication bias. This is invalid for COVID-19 acute treatment trials — the underlying assumptions are invalid, which we can demonstrate with a simple example. Consider a set of hypothetical perfect trials with no bias. Figure 18 plot A shows a funnel plot for a simulation of 80 perfect trials, with random group sizes, and each patient’s outcome randomly sampled (10% control event probability, and a 30% effect size for treatment). Analysis shows no asymmetry ($p > 0.05$). In plot B, we add a single typical variation in COVID-19 treatment trials — treatment delay. Consider that efficacy varies from 90% for treatment within 24 hours, reducing to 10% when treatment is delayed 3 days. In plot B, each trial’s treatment delay is randomly selected. Analysis now shows highly significant asymmetry, $p < 0.0001$, with six variants of Egger’s test all showing $p < 0.05$. Egger, Harbord, Macaskill, Moreno, Peters, Rothstein, Rücker, Stanley. Note that these tests fail even though treatment delay is uniformly distributed. In reality treatment delay is more complex — each trial has a different distribution of delays across patients, and the distribution across trials may be biased (e.g., late treatment trials may be more common). Similarly, many other variations in trials may produce asymmetry, including dose, administration, duration of treatment, differences in SOC, comorbidities, age, variants, and bias in design, implementation, analysis, and reporting.

Figure 18. Example funnel plot analysis for simulated perfect trials.

Conflicts of interest. Pharmaceutical drug trials often have conflicts of interest whereby sponsors or trial staff have a financial interest in the outcome being positive. Hydrogen Peroxide for COVID-19 lacks this because it is off-patent, has multiple manufacturers, and is very low cost. In contrast, most COVID-19 hydrogen peroxide trials have been run by physicians on the front lines with the primary goal of finding the best methods to save human lives and minimize the collateral damage caused by COVID-19. While pharmaceutical companies are careful to run trials under optimal conditions (for example, restricting patients to those most likely to benefit, only including patients that can be treated soon after onset when necessary, and ensuring accurate dosing), not all hydrogen peroxide trials represent the optimal conditions for efficacy.
Limitations. Summary statistics from meta analysis necessarily lose information. As with all meta analyses, studies are heterogeneous, with differences in treatment delay, treatment regimen, patient demographics, variants, conflicts of interest, standard of care, and other factors. We provide analyses by specific outcomes and by treatment delay, and we aim to identify key characteristics in the forest plots and summaries. Results should be viewed in the context of study characteristics.

Some analyses classify treatment based on early or late administration, as done here, while others distinguish between mild, moderate, and severe cases. Viral load does not indicate degree of symptoms — for example patients may have a high viral load while being asymptomatic. With regard to treatments that have antiviral properties, timing of treatment is critical — late administration may be less helpful regardless of severity.

Details of treatment delay per patient is often not available. For example, a study may treat 90% of patients relatively early, but the events driving the outcome may come from 10% of patients treated very late. Our 5 day cutoff for early treatment may be too conservative, 5 days may be too late in many cases.

Comparison across treatments is confounded by differences in the studies performed, for example dose, variants, and conflicts of interest. Trials affiliated with special interests may use designs better suited to the preferred outcome.

In some cases, the most serious outcome has very few events, resulting in lower confidence results being used in pooled analysis, however the method is simpler and more transparent. This is less critical as the number of studies increases. Restriction to outcomes with sufficient power may be beneficial in pooled analysis and improve accuracy when there are few studies, however we maintain our pre-specified method to avoid any retrospective changes.

Studies show that combinations of treatments can be highly synergistic and may result in many times greater efficacy than individual treatments alone. Alsaidi, Andreani, Biancatelli, De Forni, Gasmi, Jeffreys, Jitobaom, Jitobaom (B), Ostrov, Thairu, Therefore standard of care may be critical and benefits may diminish or disappear if standard of care does not include certain treatments.

This real-time analysis is constantly updated based on submissions. Accuracy benefits from widespread review and submission of updates and corrections from reviewers. Less popular treatments may receive fewer reviews.

No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. Efficacy may vary significantly with different variants and within different populations. All treatments have potential side effects. Propensity to experience side effects may be predicted in advance by qualified physicians. We do not provide medical advice. Before taking any medication, consult a qualified physician who can compare all options, provide personalized advice, and provide details of risks and benefits based on individual medical history and situations.

Notes. 1 of 7 studies combine treatments. The results of hydrogen peroxide alone may differ. 1 of 4 RCTs use combined treatment.

Conclusion

SARS-CoV-2 infection typically starts in the upper respiratory tract. Progression may lead to cytokine storm, pneumonia, ARDS, neurological issues, organ failure, and death. Stopping replication in the upper respiratory tract, via early or prophylactic nasopharyngeal/oropharyngeal treatment, can avoid the consequences of progression to other tissues, and avoid the requirement for systemic treatments with greater potential for side effects.

Statistically significant lower risk is seen for viral clearance. 2 studies from 2 independent teams in 2 countries show statistically significant improvements. Meta analysis using the most serious outcome reported shows 38% [4-59%] lower risk. Results are better for Randomized Controlled Trials and higher quality studies and slightly worse for peer-reviewed studies.

Currently there is limited data, with only 835 patients and only 26 control events for the most serious outcome in trials to date.
Agrawal

Hydrogen Peroxide

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>67%</td>
</tr>
<tr>
<td>Ventilation</td>
<td>67%</td>
</tr>
<tr>
<td>Oxygen time</td>
<td>46%</td>
</tr>
<tr>
<td>Recovery time, dyspnea</td>
<td>36%</td>
</tr>
<tr>
<td>Recovery time, fever</td>
<td>39%</td>
</tr>
<tr>
<td>Recovery time, cough</td>
<td>30%</td>
</tr>
<tr>
<td>Time to viral-</td>
<td>45%</td>
</tr>
</tbody>
</table>

Is late treatment with hydrogen peroxide beneficial for COVID-19?

Double-blind RCT 40 patients in India

Lower need for oxygen therapy ($p<0.0001$) and faster recovery ($p<0.0001$)

Agrawal et al., J. South Asian Federat., Apr 2022

Amoah

Hydrogen Peroxide

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case, Jan-Mar 2021</td>
<td>93%</td>
</tr>
<tr>
<td>Case, May-Dec 2020</td>
<td>98%</td>
</tr>
</tbody>
</table>

Does hydrogen peroxide reduce COVID-19 infections?

Retrospective 466 patients in Ghana (May 2020 - December 2021)

Fewer cases with hydrogen peroxide (not stat. sig., $p=0.22$)

Amoah et al., J. Hospital Infection, Aug 2022

Agrawal: RCT 40 patients in India, showing improved recovery with nebulized hydrogen peroxide.

Amoah: Retrospective 458 healthcare workers in Ghana, showing lower COVID-19 cases with hydrogen peroxide prophylaxis (oral and nasal rinse), without statistical significance.
Di Domênico

Di Domênico et al. LATE TREATMENT DB RCT

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU admission</td>
<td>34%</td>
</tr>
<tr>
<td>Recovery</td>
<td>-1%</td>
</tr>
<tr>
<td>PASC</td>
<td>31%</td>
</tr>
</tbody>
</table>

Is late treatment with hydrogen peroxide beneficial for COVID-19? Double-blind RCT 128 patients in Brazil Lower PASC with hydrogen peroxide (not stat. sig., p=0.54)

c19early.org Di Domênico et al., Epidemiology and H... Aug 2021

Di Domênico RCT very late treatment (>9 days from onset) comparing hydrogen peroxide + mint essence with water + mint essence, showing no significant differences.

Di Domênico

Di Domênico et al. LATE TREATMENT DB RCT

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Relative Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU admission</td>
<td>50%</td>
</tr>
<tr>
<td>Improvement</td>
<td>6%</td>
</tr>
<tr>
<td>Time to discharge</td>
<td>7%</td>
</tr>
</tbody>
</table>

Is late treatment with hydrogen peroxide beneficial for COVID-19? Double-blind RCT 40 patients in Brazil Trial underpowered for serious outcomes

c19early.org Di Domênico et al., Epidemiology and H... May 2021

Di Domênico (B) RCT very late treatment (>10 days from onset) comparing hydrogen peroxide + mint essence with water + mint essence, showing no significant differences.

Gansky

Gansky 54 patient hydrogen peroxide early treatment RCT with results not reported over 1 year after completion.

Jacox

Jacox 129 patient hydrogen peroxide early treatment RCT with results not reported over 2 years after completion.
Jayaraman: Study of SARS-CoV-2 burden in whole mouth fluid and respiratory droplets with povidone iodine, hydrogen peroxide, and chlorhexidine mouthwashes in 36 hospitalized COVID-19 patients using PCR and rapid antigen testing. There were significant reductions in SARS-CoV-2 burden with all treatments in both respiratory droplets and whole mouth fluid.

Analysis of short-term changes in viral load using PCR may not detect effective treatments because PCR is unable to differentiate between intact infectious virus and non-infectious or destroyed virus particles. For example, Alemany, Tarragó-Gil perform RCTs with cetylpyridinium chloride (CPC) mouthwash that show no difference in PCR viral load, however there was significantly increased detection of SARS-CoV-2 nucleocapsid protein, indicating viral lysis. CPC inactivates SARS-CoV-2 by degrading its membrane, exposing the nucleocapsid of the virus. To better estimate changes in viral load and infectivity, methods like viral culture or antigen detection that can differentiate intact vs. degraded virus are preferred.

Authors perform antigen testing for 6 hydrogen peroxide patients, showing that 50% became negative after treatment.

Khan: Estimated 50 patient hydrogen peroxide early treatment RCT with results not reported over 1 year after estimated completion.

Mukhtar: RCT for mouthwash containing hydrogen peroxide 2% and chlorhexidine gluconate, showing higher discharge, shorter hospital stay, less intubation, and lower mortality with treatment.
Pablo-Marcos

Small prospective study with 31 patients gargling povidone-iodine, 17 hydrogen peroxide, and 40 control patients, showing lower viral load mid-recovery with povidone-iodine, without reaching statistical significance. Oropharyngeal only, and only every 8 hours for two days. Results may be better with the addition of nasopharyngeal use, more frequent use, and without the two day limit.

Authors report only one of the 7 previous trials for PVP-I and COVID-19. Non-randomized study with no adjustments or group details. Some results in Figure 1 appear to be switched compared to the text and the labels in the figure. The viral clearance figures do not match the group sizes - for example authors report 62% PCR- for PVP-I at the 3rd test, however there is no number of 31 patients that rounds to 62%.

Xie

Estimated 90 patient hydrogen peroxide early treatment RCT with results not reported over 1.5 years after estimated completion.

Appendix 1. Methods and Data

We performed ongoing searches of PubMed, medRxiv, ClinicalTrials.gov, The Cochrane Library, Google Scholar, Collabovid, Research Square, ScienceDirect, Oxford University Press, the reference lists of other studies and meta-analyses, and submissions to the site c19early.org. Search terms were hydrogen peroxide, filtered for papers containing the terms COVID-19 or SARS-CoV-2. Automated searches are performed every few hours with notification of new matches. All studies regarding the use of hydrogen peroxide for COVID-19 that report a comparison with a control group are included in the main analysis. Sensitivity analysis is performed, excluding studies with major issues, epidemiological studies, and studies with minimal available information. This is a living analysis and is updated regularly.

We extracted effect sizes and associated data from all studies. If studies report multiple kinds of effects then the most serious outcome is used in pooled analysis, while other outcomes are included in the outcome specific analyses. For example, if effects for mortality and cases are both reported, the effect for mortality is used, this may be different to the effect that a study focused on. If symptomatic results are reported at multiple times, we used the latest time, for example if mortality results are provided at 14 days and 28 days, the results at 28 days are used. Mortality alone is preferred over combined outcomes. Outcomes with zero events in both arms were not used (the next most serious outcome is used — no studies were excluded). For example, in low-risk populations with no mortality, a reduction in mortality with treatment is not possible, however a reduction in hospitalization, for example, is still valuable. Clinical outcome is considered more important than PCR testing status. When basically all patients recover in both treatment and control groups, preference for viral clearance and recovery is given to results mid-recovery where available (after most or all patients have recovered there is no room for an effective treatment to do better). If only individual symptom data is available, the most serious symptom has priority, for example difficulty breathing or low SpO₂ is more important than cough. When results provide an odds ratio, we computed the relative risk when possible, or converted
to a relative risk according to Zhang. Reported confidence intervals and p-values were used when available, using adjusted values when provided. If multiple types of adjustments are reported including propensity score matching (PSM), the PSM results are used. Adjusted primary outcome results have preference over unadjusted results for a more serious outcome when the adjustments significantly alter results. When needed, conversion between reported p-values and confidence intervals followed Altman, Altman (B), and Fisher’s exact test was used to calculate p-values for event data. If continuity correction for zero values is required, we use the reciprocal of the opposite arm with the sum of the correction factors equal to 1 Sweeting. Results are expressed with RR < 1.0 favoring treatment, and using the risk of a negative outcome when applicable (for example, the risk of death rather than the risk of survival). If studies only report relative continuous values such as relative times, the ratio of the time for the treatment group versus the time for the control group is used. Calculations are done in Python (3.11.6) with scipy (1.11.3), pythonmeta (1.26), numpy (1.26.1), statsmodels (0.14.0), and plotly (5.17.0).

Forest plots are computed using PythonMeta Deng with the DerSimonian and Laird random effects model (the fixed effect assumption is not plausible in this case) and inverse variance weighting. Mixed-effects meta-regression results are computed with R (4.1.2) using the metafor (3.0-2) and rms (6.2-0) packages, and using the most serious sufficiently powered outcome.

We received no funding, this research is done in our spare time. We have no affiliations with any pharmaceutical companies or political parties.

We have classified studies as early treatment if most patients are not already at a severe stage at the time of treatment (for example based on oxygen status or lung involvement), and treatment started within 5 days of the onset of symptoms. If studies contain a mix of early treatment and late treatment patients, we consider the treatment time of patients contributing most to the events (for example, consider a study where most patients are treated early but late treatment patients are included, and all mortality events were observed with late treatment patients). We note that a shorter time may be preferable. Antivirals are typically only considered effective when used within a shorter timeframe, for example 0-36 or 0-48 hours for oseltamivir, with longer delays not being effective McLean, Treanor.

A summary of study results is below. Please submit updates and corrections at https://c19early.org/hpmeta.html.

Early treatment

Effect extraction follows pre-specified rules as detailed above and gives priority to more serious outcomes. For pooled analyses, the first (most serious) outcome is used, which may differ from the effect a paper focuses on. Other outcomes are used in outcome specific analyses.

<table>
<thead>
<tr>
<th>Study</th>
<th>Date</th>
<th>Type</th>
<th>Country</th>
<th>Trial Code</th>
<th>Patients</th>
<th>Duration</th>
<th>Outcome</th>
<th>NNT</th>
<th>Treatment</th>
<th>Control</th>
<th>RR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gansky</td>
<td>9/19/2022, Double Blind Randomized Controlled Trial, USA</td>
<td>trial NCT04409873 (history) (AMPoL).</td>
<td>54 patient RCT with results missing over 1 year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jacox</td>
<td>10/19/2021, Double Blind Randomized Controlled Trial, USA</td>
<td>trial NCT04584684 (history) (MOR).</td>
<td>129 patient RCT with results missing over 2 years.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jayaraman</td>
<td>3/1/2021, prospective, India, preprint, 12 authors.</td>
<td></td>
<td></td>
<td>risk of no viral clearance, 50.0% lower, RR 0.50, $p = 0.18$, treatment 3 of 6 (50.0%), control 6 of 6 (100.0%), NNT 2.0, antigen results.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khan</td>
<td>7/31/2022, Double Blind Randomized Controlled Trial, Pakistan</td>
<td>trial NCT04341688 (history) (GARGLES).</td>
<td>Estimated 50 patient RCT with results missing over 1 year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mukhtar</td>
<td>11/30/2020, Randomized Controlled Trial, Qatar, preprint, 15 authors, this trial uses multiple treatments in the treatment arm (combined with</td>
<td></td>
<td></td>
<td>risk of death, 85.7% lower, RR 0.14, $p = 0.24$, treatment 0 of 46 (0.0%), control 3 of 46 (6.5%), NNT 15, relative risk is not 0 because of continuity correction due to zero events (with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
chlorhexidine gluconate) - results of individual treatments may vary, trial ISRCTN10197987.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>RR</th>
<th>p-value</th>
<th>NNT</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical ventilation</td>
<td>0.14</td>
<td>0.24</td>
<td>15</td>
<td>reciprocal of the contrasting arm, including third control death on day 54.</td>
</tr>
</tbody>
</table>

- Risk of mechanical ventilation, 85.7% lower, RR 0.14, p = 0.24, treatment 0 of 46 (0.0%), control 3 of 46 (6.5%), NNT 15.
- Relative risk is not 0 because of continuity correction due to zero events (with reciprocal of the contrasting arm).

- Risk of no viral clearance, 18.1% lower, RR 0.82, p = 0.16, treatment 28 of 43 (65.1%), control 35 of 44 (79.5%), NNT 6.9, day 15.

- Risk of no viral clearance, 14.0% lower, RR 0.86, p = 0.01, treatment 37 of 43 (86.0%), control 44 of 44 (100.0%), NNT 7.2, day 5.

<table>
<thead>
<tr>
<th>Author</th>
<th>Date</th>
<th>Trial Type</th>
<th>Control</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pablo-Marcos</td>
<td>10/25/2021</td>
<td>Prospective, Spain</td>
<td>Peer-reviewed</td>
<td>Mean age 43.0, 6 authors, study period May 2020 - November 2020, excluded in exclusion analyses: unadjusted results with no group details.</td>
</tr>
</tbody>
</table>

- Relative viral load, 12.5% better, RR 0.88, p = 0.67, treatment mean 2.1 (±2.5) n=17, control mean 2.4 (±2.4) n=40, 3rd PCR (mid-recovery).

- Relative viral load, 63.6% worse, RR 1.64, p = 0.16, treatment mean 1.8 (±2.5) n=31, control mean 1.1 (±1.6) n=40, 4th PCR (most patients recovered).

<table>
<thead>
<tr>
<th>Author</th>
<th>Date</th>
<th>Trial Type</th>
<th>Control</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xie</td>
<td>2/28/2022</td>
<td>Double Blind Randomized Controlled Trial, placebo-controlled</td>
<td>Trial NCT04931004 (history)</td>
<td>Estimated 90 patient RCT with results missing over 1.5 years.</td>
</tr>
</tbody>
</table>

Late treatment

Effect extraction follows pre-specified rules as detailed above and gives priority to more serious outcomes. For pooled analyses, the first (most serious) outcome is used, which may differ from the effect a paper focuses on. Other outcomes are used in outcome specific analyses.

<table>
<thead>
<tr>
<th>Author</th>
<th>Date</th>
<th>Trial Type</th>
<th>Control</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrawal</td>
<td>4/5/2022</td>
<td>Double Blind Randomized Controlled Trial, placebo-controlled, India</td>
<td>Peer-reviewed, mean age 47.0, 8 authors, trial CTRI/2020/08/027038 (HOPE in COVID-19)</td>
<td>Mean age 47.0, 8 authors, trial CTRI/2020/08/027038 (HOPE in COVID-19).</td>
</tr>
</tbody>
</table>

- Risk of death, 66.7% lower, RR 0.33, p = 0.60, treatment 1 of 20 (5.0%), control 3 of 20 (15.0%), NNT 10.0.

- Risk of mechanical ventilation, 66.7% lower, RR 0.33, p = 0.60, treatment 1 of 20 (5.0%), control 3 of 20 (15.0%), NNT 10.0.

- Oxygen time, 46.3% lower, relative time 0.54, p < 0.001, treatment mean 4.74 (±1.62) n=19, control mean 8.82 (±1.59) n=17.

- Recovery time, 35.7% lower, relative time 0.64, p < 0.001, treatment mean 4.58 (±1.12) n=19, control mean 7.12 (±1.05) n=17, dyspnea.

- Recovery time, 38.9% lower, relative time 0.61, p < 0.001, treatment mean 2.84 (±1.01) n=19, control mean 4.65 (±1.22) n=17, fever.

- Recovery time, 29.8% lower, relative time 0.70, p = 0.001, treatment mean 4.79 (±1.84) n=19, control mean 6.82 (±1.51) n=17, cough.
<table>
<thead>
<tr>
<th>Di Domênico, 8/3/2021, Double Blind Randomized Controlled Trial, placebo-controlled, Brazil, peer-reviewed, survey, 9 authors.</th>
<th>time to viral-, 45.2% lower, relative time 0.55, (p < 0.001), treatment mean 5.16 (±1.21) (n=19), control mean 9.41 (±1.97) (n=17).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di Domênico (B), 5/1/2021, Double Blind Randomized Controlled Trial, placebo-controlled, Brazil, peer-reviewed, survey, 9 authors, average treatment delay 10.72 days.</td>
<td>risk of ICU admission, 33.8% lower, RR 0.66, (p = 1.00), treatment 2 of 77 (2.6%), control 2 of 51 (3.9%), NNT 76.</td>
</tr>
<tr>
<td></td>
<td>risk of no recovery, 1.0% higher, HR 1.01, (p = 0.97), treatment 63, control 43, inverted to make HR<1 favor treatment.</td>
</tr>
<tr>
<td></td>
<td>risk of PASC, 31.4% lower, RR 0.69, (p = 0.54), treatment 6 of 51 (11.8%), control 6 of 35 (17.1%), NNT 19, antibody positive.</td>
</tr>
</tbody>
</table>

Prophylaxis

Effect extraction follows pre-specified rules as detailed above and gives priority to more serious outcomes. For pooled analyses, the first (most serious) outcome is used, which may differ from the effect a paper focuses on. Other outcomes are used in outcome specific analyses.

<table>
<thead>
<tr>
<th>Amoah, 8/31/2022, retrospective, Ghana, peer-reviewed, 12 authors, study period May 2020 - December 2021.</th>
<th>risk of ICU admission, 50.0% lower, RR 0.50, (p = 1.00), treatment 1 of 20 (5.0%), control 2 of 20 (10.0%), NNT 20.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>improvement, 5.7% lower, HR 0.94, (p = 0.91), treatment 18, control 17, inverted to make HR<1 favor treatment.</td>
</tr>
<tr>
<td></td>
<td>time to discharge, 7.0% lower, relative time 0.93, (p = 0.61), treatment mean 3.86 (±1.6) (n=18), control mean 4.15 (±1.77) (n=17).</td>
</tr>
</tbody>
</table>

Supplementary Data

References

3. Alsaidi et al., Griffithsin and Carrageenan Combination Results in Antiviral Synergy against SARS-CoV-1 and 2 in a Pseudoviral Model, Marine Drugs, doi:10.3390/md19080418.

5. Altman (B) et al., How to obtain the confidence interval from a P value, BMJ, doi:10.1136/bmj.d2090.

8. Anglemeyer et al., Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials, Cochrane Database of Systematic Reviews 2014, Issue 4, doi:10.1002/14651858.MR000034.pub2.

11. c19early.org, c19early.org/timeline.html.

18. Di Doménico (B) et al., Effectiveness of hydrogen peroxide as auxiliary treatment for hospitalized COVID-19 patients in Brazil: preliminary results of a randomized double-blind clinical trial, Epidemiology and Health, doi:10.4178/epih.e2021032.

20. Faria et al., Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil, Science, doi:10.1126/science.abh2644.

33. Karita et al., Trajectory of viral load in a prospective population-based cohort with incident SARS-CoV-2 G614 infection, medRxiv, doi:10.1101/2021.08.27.21262754.
40. Meeus, G., Online Comment, twitter.com/gertmeeus_MD/status/1386636373889781761.
42. Moreno et al., Assessment of regression-based methods to adjust for publication bias through a comprehensive simulation study, BMC Medical Research Methodology, doi:10.1186/1471-2288-9-2.
46. Ostrov et al., Highly Specific Sigma Receptor Ligands Exhibit Anti-Viral Properties in SARS-CoV-2 Infected Cells, Pathogens, doi:10.3390/pathogens10111514.

51. Rücker et al., Arcsine test for publication bias in meta-analyses with binary outcomes, Statistics in Medicine, doi:10.1002/sim.2971.

57. Willett et al., The hyper-transmissible SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine escape and a switch in cell entry mechanism, medRxiv, doi:10.1101/2022.01.08.21268111.

58. Williams, T., Not All Ivermectin Is Created Equal: Comparing The Quality of 11 Different Ivermectin Sources, Do Your Own Research, doyourownresearch.substack.com/p/not-all-ivermectin-is-created-equal.

59. Xie et al., Oral Rinse to Reduced Expelled Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) During COVID-19 Infection, NCT04931004, clinicaltrials.gov/study/NCT04931004.

61. Zavascki et al., Advanced ventilatory support and mortality in hospitalized patients with COVID-19 caused by Gamma (P.1) variant of concern compared to other lineages: cohort study at a reference center in Brazil, Research Square, doi:10.21203/rs.3.rs-910467/v1.
